《重组卷04-冲刺备考2022年中考精选真题重组卷(江苏南京卷)(解析版).docx》由会员分享,可在线阅读,更多相关《重组卷04-冲刺备考2022年中考精选真题重组卷(江苏南京卷)(解析版).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、冲刺备战2022年中考精选真题重组卷江苏南京卷04班级_ 姓名_ 学号_ 分数_(考试时间:120分钟 试卷满分:120分)第卷(选择题 共12分)一、选择题(共6小题,每小题2分,计12分,每小题只有一个选项是符合题意的)1. 备考2022年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重,将数58000用科学记数法表示为ABCD【答案】D【解析】 将数58000用科学记数法表示为故选:D2. 的平方根是AB4CD2【答案】【解析】 ,故选:C3.下列运算正确的是()A2x2y+3xy5x3y2B(2ab2)36a3b6C(3a+b)29a2+b2D(3a+b)(
2、3ab)9a2b2【答案】D【解析】 A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B(2ab2)38a3b6,故选项B不合题意;C(3a+b)29a2+6ab+b2,故选项C不合题意;D(3a+b)(3ab)9a2b2,故选项D符合题意故选:D4.如图,在四边形ABCD中,ABDC,ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K若BG=32,FEG=45°,则HK=()A. 223B. 526C. 322D. 1326【答案】B【解析】 ADC=90
3、°,CD=AD=3,AC=3,AB=5,BG=,AG=,ABDC,CEKAGK,=,=,=,CK+AK=3,CK=,过E作EMAB于M,则四边形ADEM是矩形,EM=AD=3,AM=DE=2,MG=,EG=,=,EK=,HEK=KCE=45°,EHK=CHE,HEKHCE,=,设HE=3x,HK=x,HEKHCE,=,=,解得:x=,HK=,故选:B5.已知四个实数a,b,c,d,若ab,cd,则()Aa+cb+dBacbdCacbdD【答案】A【解析】 ab,cd,a+cb+d故选:A6. 如图,在ABC中,D是AC边上的中点,连结BD,把BDC沿BD翻折,得到BDC
4、39;,DC与AB交于点E,连结AC',若ADAC2,BD3,则点D到BC的距离为()ABCD【答案】B【解析】 如图,连接CC',交BD于点M,过点D作DHBC'于点H,ADAC2,D是AC边上的中点,DCAD2,由翻折知,BDCBDC',BD垂直平分CC',DCDC'2,BCBC',CMC'M,ADACDC'2,ADC'为等边三角形,ADC'AC'DC'AC60°,DCDC',DCC'DC'C×60°30°,在RtC'
5、;DM中,DC'C30°,DC'2,DM1,C'MDM,BMBDDM312,在RtBMC'中,BC',SBDC'BC'DHBDCM,DH3×,DH,故选:B第卷(非选择题 共108分)二、填空题(共10小题,每小题2分,计20分)7.计算:()0 【答案】2+1【解析】 ()02+212+1,故答案为:2+18.若m+1与2互为相反数,则m的值为 【答案】1【解析】 根据题意得:m+120,解得:m1,故答案为:19.如图,在矩形中,点是对角线上的一个动点,连接,以为斜边作的直角三角形,使点和点位于两侧,点从点到点的运
6、动过程中,点的运动路径长是 第9题图 第10题图【答案】【解析】 的运动路径是的长;,当与点重合时,在中,当与重合时,在中,;故答案为10.如图,在中,半径垂直于弦,点在圆上且,则的度数为【答案】【解析】 ,故答案为11.如图,直线MNPQ,点A、B分别在MN、PQ上,MAB33°过线段AB上的点C作CDAB交PQ于点D,则CDB的大小为 度 第11题图 第12题图【答案】57【解析】 直线MNPQ,MABABD33°,CDAB,BCD90°,CDB90°33°57°故答案为:5712.如图,在四边形中,点,分别是,的中点,若,则四边
7、形的周长是【答案】【解析】 、是和的中点,同理,四边形的周长是:故答案为:13.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分【答案】9.1【解析】 该班的平均得分是:×(5×8+8×9+7×10)9.1(分)故答案为:9.114.若关于x的一元二次方程ax2x0(a0)有两个不相等的实数根,则点P(a+1,a3)在第 象限【答案】四【解析】 关于x的一元二次方程ax2x0(a0)有两个不相等的实数根,解得:a1且a0a+10,a30,点P(a+1,a3)在第四象限故答案为:四15. 如图,在正方形中,将沿翻折,使点对
8、应点刚好落在对角线上,将沿翻折,使点对应点刚好落在对角线上,求【答案】【解析】如图,作于点四边形是正方形,将沿翻折,点对应点刚好落在对角线上的点,将沿翻折,使点对应点刚好落在对角线上的点,正方形的边长,故答案为16. 如图,在RtABC中,BAC90°,且BA3,AC4,点D是斜边BC上的一个动点,过点D分别作DMAB于点M,DNAC于点N,连接MN,则线段MN的最小值为 【答案】【解析】 BAC90°,且BA3,AC4,BC5,DMAB,DNAC,DMADNABAC90°,四边形DMAN是矩形,MNAD,当ADBC时,AD的值最小,此时,ABC的面积AB
9、5;ACBC×AD,AD,MN的最小值为;故答案为:三、解答题(共11小题,计88分解答应写出过程)17(7分)计算:(x+y)2y(2x+y)【解析】 原式=x²+2xy+y²-2xy-y²=x²18(7分)解分式方程:1【解析】1,方程两边乘(x2)2得:x(x2)(x2)24,解得:x4,检验:当x4时,(x2)20所以原方程的解为x419.(7分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上(1)求证:BGDE;(2)若E为AD中点,FH2,求菱形ABCD的周长【解析】(1)四
10、边形EFGH是矩形,EHFG,EHFG,GFHEHF,BFG180°GFH,DHE180°EHF,BFGDHE,四边形ABCD是菱形,ADBC,GBFEDH,BGFDEH(AAS),BGDE;(2)连接EG,四边形ABCD是菱形,ADBC,ADBC,E为AD中点,AEED,BGDE,AEBG,AEBG,四边形ABGE是平行四边形,ABEG,EGFH2,AB2,菱形ABCD的周长820(8分)车间有20名工人,某一天他们生产的零件个数统计如下表车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求
11、这一天20名工人生产零件的平均个数(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【解析】(1)×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人
12、获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;定额为11个时,有利于提高大多数工人的积极性21(7分)为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:0t30;B:30t60;C:60t120;D:t120),并绘制出如图所示的两幅不完整的统计图(1)求D组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在C、D两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰好选中一男一女的概率【解析】(1)被调查的总人数为6÷30%2
13、0(人),C组人数为20×20%4(人),则D组人数为20(6+7+4)3(人),D组所在扇形的圆心角的度数为360°×54°,补全图形如下:(2)树状图如下:共有12种等可能的情况,其中选中一名男同学和一名女同学的情况有6种,选中一名男同学和一名女同学的概率为22(8分)如图,在RtABC中,ABC90°,以AB为直径作O,点D为O上一点,且CDCB,连接DO并延长交CB的延长线于点E(1)判断直线CD与O的位置关系,并说明理由;(2)若BE2,DE4,求圆的半径及AC的长【解析】(1)证明:连接OCCBCD,COCO,OBOD,OCBOCD
14、(SSS),ODCOBC90°,ODDC,DC是O的切线;(2)解:设O的半径为r在RtOBE中,OE2EB2+OB2,(4r)2r2+22,r1.5,tanE,CDBC3,在RtABC中,AC3圆的半径为1.5,AC的长为323(8分)如图,已知过点的直线与直线:相交于点. (1)求直线的解析式; (2)求四边形的面积.【解析】(1),即, 则的坐标为,设直线的解析式为:, 那么,解得: . 的解析式为:. (2)直线与轴相交于点, 的坐标为, 又直线与轴相交于点, 点的坐标为,则, 而, . 24(8分)小明利用刚学过的测量知识来测量学校内一棵古树的高度。一天下午,他和学习小组的
15、同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示。于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米。已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB。(小平面镜的大小忽略不计)【解析】如图,过点C作CHAB于点H
16、,则CHBD,BHCD0.5在RtACH中,ACH45°,AHCHBDABAHBHBD0.5EFFB,ABFB,EFGABG90°.由题意,易知EGFAGB,EFGABC 即解之,得BD17.5AB=17.50.518(m)这棵古树的高AB为18m25(8分)如图,有一块矩形硬纸板,长,宽在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子当剪去正方形的边长取何值时,所得长方体盒子的侧面积为?【解析】设剪去正方形的边长为,则做成无盖长方体盒子的底面长为,宽为,高为,依题意,得:,整理,得:,解得:,当时,不合题意,舍去答:当剪去正方形的边长为时,
17、所得长方体盒子的侧面积为26(9分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BFCE于点G,交AD于点F(1)求证:ABFBCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DCDG;(3)如图3,在(2)的条件下,过点C作CMDG于点H,分别交AD,BF于点M,N,求的值【解析】(1)证明:BFCE,CGB90°,GCB+CBG90,四边形ABCD是正方形,CBE90°A,BCAB,FBA+CBG90,GCBFBA,ABFBCE(ASA);(2)证明:如图2,过点D作DHCE于H,设ABCDBC2a,点E是
18、AB的中点,EAEBABa,CEa,在RtCEB中,根据面积相等,得BGCECBEB,BGa,CGa,DCE+BCE90°,CBF+BCE90°,DCECBF,CDBC,CQDCGB90°,CQDBGC(AAS),CQBGa,GQCGCQaCQ,DQDQ,CQDGQD90°,DGQCDQ(SAS),CDGD;(3)解:如图3,过点D作DHCE于H,SCDGDQCHDG,CHa,在RtCHD中,CD2a,DHa,MDH+HDC90°,HCD+HDC90°,MDHHCD,CHDDHM,HMa,在RtCHG中,CGa,CHa,GHa,MGH
19、+CGH90°,HCG+CGH90°,QGHHCG,QGHGCH,HNa,MNHMHNa, 27(11分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,ABO30°矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD2()如图,求点E的坐标;()将矩形CODE沿x轴向右平移,得到矩形CODE,点C,O,D,E的对应点分别为C,O,D,E设OOt,矩形CODE与ABO重叠部分的面积为S如图,当矩形CODE与ABO重叠部分为五边形时,CE,ED分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;当S5时,求t的取值范围
20、(直接写出结果即可)【解析】()点A(6,0),OA6,OD2,ADOAOD624,四边形CODE是矩形,DEOC,AEDABO30°,在RtAED中,AE2AD8,ED4,OD2,点E的坐标为(2,4);()由平移的性质得:OD2,ED4,MEOOt,DEOCOB,EFMABO30°,在RtMFE中,MF2ME2t,FEt,SMFEMEFE×t×t,S矩形CODEODED2×48,SS矩形CODESMFE8,St2+8,其中t的取值范围是:0t2;当S时,如图所示:O'AOAOO'6t,AO'F90°,AFO'ABO30°,O'FO'A(6t)S(6t)×(6t),解得:t6,或t6+(舍去),t6;当S5时,如图所示:O'A6t,D'A6t24t,O'G(6t),D'F(4t),S(6t)+(4t)×25,解得:t,当S5时,t的取值范围为t6