《七班级下册数学第九章学问点总结.docx》由会员分享,可在线阅读,更多相关《七班级下册数学第九章学问点总结.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七班级下册数学第九章学问点总结 在数学考试的过程中要认真仔细,做到不该丢的不能丢,分分计较,做到颗粒归仓。由于解题时即使思路正确,不留意细节与计算也能丢分。下面是我整理的七班级下册数学第九章学问点总结,仅供参考盼望能够关心到大家。 七班级下册数学第九章学问点总结 1.不等式:用符号,表示大小关系的式子叫做不等式。 2.不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。 3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4.不等
2、式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有很多个解,其解集是一个范围,这个范围可用最简洁的不等式表达出来,例如:x-12的解集是x3 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要留意两点:一是定边界线;二是定方向。 6.解不等式可遵循的一些同解原理 (1)不等式F(x) n,那么x+my+n(充分不必要条件) (7)假如xy0,mn0,那么xmyn (8)假如xy0,那么x的n次幂y的n次幂(n为正数) 8.一元一次不等式:不
3、等式的左、右两边都是整式,只有一个未知数,并且未知数的次数是1,像这样的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般挨次: (1)去分母 (运用不等式性质2、3) (2)去括号 (3)移项 (运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1 (运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10. 一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12.解一元一次不等式组的步骤: (1) 求出每个不等式的解集
4、; (2) 求出每个不等式的解集的公共部分;(一般利用数轴) (3) 用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X-1,X2 ,不等式组的解集是X2 (2)小于小于取小的(小小小); 例如:X-4,X-6,不等式组的解集是X-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14.解不等式组的口诀 (1)同大取大 例如,x2,x3 ,不等式组的解集是X3 (2)同小取小 例如,x2,x3 ,不等式组的解集是X2 (3)大小小大中间找 例如,x2,x1,不等式组的解集是1 (4)大大小小不用找 例如,x2,x3
5、,不等式组无解 15.应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,依据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16.用不等式组解决实际问题:其公共解不肯定就为实际问题的解,所以需结合生活实际详细分析,最终确定结果。 学好数学的方法和技巧 狠抓“双基”训练 “双基”即基础学问与基本技能。基础学问是指数学概念、定理、法则、公式以及各种学问之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,学校数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。只有扎实地把握“双基”,才能敏捷应用、深
6、化探究,不断创新。 解决疑难 这是指对独立完成作业过程中暴露出来对学问理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难肯定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清晰要反复思索,实在解决不了的要请教老师和同学,并常常把简单错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的学问,长期坚持使对所学学问由“熟”到“活”。 数学有理数的运算学问点 乘法: 两数相乘,同号得正,异号得负,肯定值相乘。 任何数与0相乘得0。 乘积为1的两个有理数互为倒数。 除法: 除以一个数等于乘以一个数的倒数。 0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合挨次:先算乘法,再算乘除,最终算加减,有括号要先算括号里的。 七班级下册数学第九章学问点总结