《行列式的性质行列式展开讲稿.ppt》由会员分享,可在线阅读,更多相关《行列式的性质行列式展开讲稿.ppt(61页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于行列式的性质关于行列式的性质行列式展开行列式展开第一页,讲稿共六十一页哦一、行列式的性质一、行列式的性质2 2 2 2、性质、性质、性质、性质1 1 1 1 行列式与它的转置行列式相等行列式与它的转置行列式相等.行列式行列式 称为行列式称为行列式 的转置行列式的转置行列式.1、记、记第二页,讲稿共六十一页哦例如:例如:对这个行列式进行对这个行列式进行转置转置第三页,讲稿共六十一页哦3 3 3 3、性质、性质、性质、性质2 2 2 2 互换行列式的两行互换行列式的两行(列列),),行列式变号行列式变号.互换行列式的二、三行互换行列式的二、三行例例4 4、推论、推论 如果行列式有两行(列)完全
2、相同,如果行列式有两行(列)完全相同,则此行列式为零则此行列式为零.证明证明 互换相同的两行,有互换相同的两行,有 第四页,讲稿共六十一页哦5 5、性质性质3 3 行列式的某一行(列)中所有的元素行列式的某一行(列)中所有的元素都乘以同一数都乘以同一数 ,等于用数,等于用数 乘此行列式乘此行列式.即即行列式的某一行(列)中所有元素的公因子可以提行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面到行列式符号的外面第五页,讲稿共六十一页哦6、性质、性质4行列式中如果有两行行列式中如果有两行(列列)元素成比例,则元素成比例,则此行列式为零此行列式为零证明证明第六页,讲稿共六十一页哦7 7
3、、性质、性质5 5若行列式的某一列若行列式的某一列(行行)的元素都是两数的元素都是两数之和之和.则则D等于下列两个行列式之和:等于下列两个行列式之和:例如例如第七页,讲稿共六十一页哦8、性质、性质6把行列式的某一列把行列式的某一列(行行)的各元素乘以同一的各元素乘以同一数后加到另一列数后加到另一列(行行)对应的元素上去,行列式不变对应的元素上去,行列式不变例如例如第八页,讲稿共六十一页哦例例2.1二、应用举例二、应用举例计算行列式计算行列式常用常用方法:利用运算把行列式方法:利用运算把行列式化为三角形行列式化为三角形行列式,从而算得行列式的值,从而算得行列式的值 方法二方法二:三角形法三角形法
4、第九页,讲稿共六十一页哦解解第十页,讲稿共六十一页哦第十一页,讲稿共六十一页哦第十二页,讲稿共六十一页哦第十三页,讲稿共六十一页哦第十四页,讲稿共六十一页哦例例2.2 计算计算n 阶行列式阶行列式解解:将第将第 都加到第一列得都加到第一列得技巧技巧1:行和相:行和相同,同,全部加到某一全部加到某一列列第十五页,讲稿共六十一页哦技巧技巧2:相同元素很多,相同元素很多,化化0(或者化为三角形)(或者化为三角形).第十六页,讲稿共六十一页哦 (行列式中行与列具有同等的行列式中行与列具有同等的地位地位,行列式的性质凡是对行成立的对列也同样成立行列式的性质凡是对行成立的对列也同样成立).计算行列式常用方
5、法:计算行列式常用方法:(1)利用定义利用定义;(2)利用性质利用性质把行列式化为上三角形行列式,从而算得行列式的值把行列式化为上三角形行列式,从而算得行列式的值三、小结三、小结行列式的行列式的6个性质个性质第二十二页,讲稿共六十一页哦1.4 行列式按行(列)展开一、余子式与代数余子式一、余子式与代数余子式二、行列式按行二、行列式按行(列列)展开法则展开法则三、关于代数余子式的重要性质三、关于代数余子式的重要性质四、行列式的计算方法小结四、行列式的计算方法小结五、思考与练习题五、思考与练习题第二十三页,讲稿共六十一页哦例如例如一、余子式与代数余子式一、余子式与代数余子式第二十四页,讲稿共六十一
6、页哦在在 阶行列式中,把元素阶行列式中,把元素 所在的第所在的第 行和第行和第 列划去后,留下来的列划去后,留下来的 阶行列式叫做元素阶行列式叫做元素 的的余子式余子式,记作,记作叫做元素叫做元素 的的代数余子式代数余子式例如例如第二十五页,讲稿共六十一页哦第二十六页,讲稿共六十一页哦引理引理 一个一个 阶行列式,如果其中第阶行列式,如果其中第 行所有行所有元素除元素除 外都为零,那末这行列式等于外都为零,那末这行列式等于 与它的与它的代数余子式的乘积,即代数余子式的乘积,即 例如例如第二十七页,讲稿共六十一页哦性质性质 行列式等于它的任一行行列式等于它的任一行(列列)的各元素与其的各元素与其
7、对应的代数余子式乘积之和,即对应的代数余子式乘积之和,即证证二、行列式按行(列)展开法则二、行列式按行(列)展开法则第二十八页,讲稿共六十一页哦第二十九页,讲稿共六十一页哦例例3.1方法三:用降阶法方法三:用降阶法第三十页,讲稿共六十一页哦第三十一页,讲稿共六十一页哦方法四方法四:用数学归纳法用数学归纳法例例4.1证明证明第三十七页,讲稿共六十一页哦证证对阶数对阶数n用数学归纳法用数学归纳法第三十八页,讲稿共六十一页哦第三十九页,讲稿共六十一页哦评注评注第四十页,讲稿共六十一页哦 证证用数学归纳法用数学归纳法例例4.2 证明范德蒙证明范德蒙(Vandermonde)行列式行列式数学归纳法数学归
8、纳法第四十一页,讲稿共六十一页哦第四十二页,讲稿共六十一页哦 n-1阶范德蒙行列式阶范德蒙行列式第四十三页,讲稿共六十一页哦推论推论 行列式行列式任任一行一行(列列)的元素与的元素与另另一行一行(列列)的对应的对应元素的代数余子式乘积之和等于零,即元素的代数余子式乘积之和等于零,即第四十四页,讲稿共六十一页哦三、关于代数余子式的重要性质三、关于代数余子式的重要性质第四十五页,讲稿共六十一页哦方法五方法五:利用范德蒙行列式计算利用范德蒙行列式计算例例5计算计算利用范德蒙行列式计算行列式,应根据范德利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列蒙行列式的特点,将所
9、给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。式,然后根据范德蒙行列式计算出结果。第四十六页,讲稿共六十一页哦解解第四十七页,讲稿共六十一页哦上面等式右端行列式为上面等式右端行列式为n阶范德蒙行列式,由阶范德蒙行列式,由范德蒙行列式知范德蒙行列式知第四十八页,讲稿共六十一页哦评注评注本题所给行列式各行(列)都是某元本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行提取公因子、调换各行(列)的次
10、序等)将此行列式化成范德蒙行列式列式化成范德蒙行列式第四十九页,讲稿共六十一页哦例例6 6 计算计算 阶行列式阶行列式 解:先将解:先将 添上一行一列,变成下面的添上一行一列,变成下面的 阶行列式阶行列式方法六:加边法方法六:加边法第五十页,讲稿共六十一页哦显然显然,将将 的第一行乘以的第一行乘以 后加到其余各行,得后加到其余各行,得注意:此为爪形行列式,注意:此为爪形行列式,记住解此行列式的方法。记住解此行列式的方法。因因,将第将第 列的列的 倍加到第一列倍加到第一列,得得第五十一页,讲稿共六十一页哦注:此题也可不加边,直接利用倍加注:此题也可不加边,直接利用倍加及爪形行列式方法及爪形行列式
11、方法第五十二页,讲稿共六十一页哦例例7证明证明:第五十三页,讲稿共六十一页哦证明证明:第五十四页,讲稿共六十一页哦第五十五页,讲稿共六十一页哦 四、行列式的计算方法小结四、行列式的计算方法小结(3)降阶法降阶法(参见例参见例3.1,例,例3.2)(最常用最常用)(2)三角形法三角形法(参见例参见例2.1,例,例2.2)利用行列式的运算性质运算把行列式化为上(下)三角利用行列式的运算性质运算把行列式化为上(下)三角 形行列式,从而算得行列式的值形行列式,从而算得行列式的值(4)数学归纳法数学归纳法(参见例参见例4.1,例例4.2)(5)利用范德蒙行列式利用范德蒙行列式(参见例参见例5)(6)加边
12、法加边法(参见例参见例6)(7)递推法递推法(参见课本例参见课本例1.17)(1)用行列式的逆序数定义计算用行列式的逆序数定义计算(证明)(证明)第五十六页,讲稿共六十一页哦计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法小结小结第五十七页,讲稿共六十一页哦五、思考与练习题五、思考与练习题第五十八页,讲稿共六十一页哦第五十九页,讲稿共六十一页哦第六十页,讲稿共六十一页哦感感谢谢大大家家观观看看第六十一页,讲稿共六十一页哦