《复数加减法以及几何意义.ppt》由会员分享,可在线阅读,更多相关《复数加减法以及几何意义.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复数加减法及几何意义第一张,PPT共三十页,创作于2022年6月请你谈谈对复数的理解与思考.知识回顾第二张,PPT共三十页,创作于2022年6月知识回顾1、复数的概念:形如_的数叫做复数,a,b分别叫做它的_。2、复数Z1=a1+b1i与Z2=a2+b2i 相等的充要条件是_。a1=a2,b1=b2a+bi(a,bR)实部和虚部 复数复数z z=a+bi(a、b R)实数实数小数小数a (b=0)有理数有理数无理数无理数分数分数正分数正分数负分数负分数零零无限不循环小数无限不循环小数虚数虚数a+bi(b 0)3、复数的几何意义是什么?第三张,PPT共三十页,创作于2022年6月复数复数z=a+
2、biz=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)Z(a,b)一一对应一一对应平面向量平面向量一一对应一一对应一一对应一一对应xyobaZ(a,b)z=a+bix x轴轴-实轴实轴y y轴轴-虚轴虚轴 建立了平面直角坐标系来表建立了平面直角坐标系来表示复数的平面示复数的平面-复数平面复数平面 (简称简称复平面复平面)(数)(数)(形)(形)3、复数的几何意义是什么?第四张,PPT共三十页,创作于2022年6月xOz=a+biyZ(a,b)对应平面向量对应平面向量 的模的模|,即即复数复数 z=a+biz=a+bi在复平面上对应的点在复平面上对应的点Z(Z(a a,b b)到原点的距离
3、。到原点的距离。|z|=4、复数的绝对值(复数的模)的几何意义是什么?第五张,PPT共三十页,创作于2022年6月思考:思考:(1)(1)满足满足|z|=5(zR)|z|=5(zR)的的z z值有几个?值有几个?(2)(2)这些复数对应的这些复数对应的点点在复平面上构成在复平面上构成怎样的怎样的图形图形?第六张,PPT共三十页,创作于2022年6月xyO设设z=x+yi(x,yR)z=x+yi(x,yR)满足满足|z|=5(z|z|=5(zC)C)的的复数复数z z对应的点在复对应的点在复平面上将构成怎样的平面上将构成怎样的图形?图形?5555图形图形:以原点为圆心以原点为圆心,5,5为半径的
4、为半径的圆上圆上第七张,PPT共三十页,创作于2022年6月5xyO设设z=x+yi(x,yR)z=x+yi(x,yR)满足满足3|z|5(zC)3|z|5(zC)的的复数复数z z对应的点在复对应的点在复平面上将构成怎样的图平面上将构成怎样的图形?形?55553333图形图形:以原点为圆心以原点为圆心,半径半径3 3至至5 5的的圆环内圆环内猜想:猜想:第八张,PPT共三十页,创作于2022年6月探讨、两个复数:探讨、两个复数:z1a1+b1i,z2=a2+b2i z1+z2=?设问设问1、回忆回忆:是否学习过某些复数的加减运算?能否用复是否学习过某些复数的加减运算?能否用复数形式表达数形式
5、表达?若能,从复数的概念角度如何解释?若能,从复数的概念角度如何解释?问题探索 实数实数2与与3的和有的和有235写成复数形式为写成复数形式为z1=2+0i,z2=3+0i显然,此时式子显然,此时式子z1+z2=(2+3)+(0+0)i=5第九张,PPT共三十页,创作于2022年6月探讨、两个复数:探讨、两个复数:z1a1+b1i,z2=a2+b2i z1+z2=?问题探索设问设问2、复数还有其它特殊情形吗?是什么?对这类复数复数还有其它特殊情形吗?是什么?对这类复数的加法,你有什么想法?举例说明。的加法,你有什么想法?举例说明。纯虚数纯虚数2i与与3i的和是多少呢的和是多少呢?即即 z1=0
6、+2i,z2=0+3i 猜想猜想z1+z2=(0+0)+(2+3)i=0+5i=5i。第十张,PPT共三十页,创作于2022年6月归纳、类比归纳、类比 对一般的两个复数相加有什么猜想,即对一般的两个复数相加有什么猜想,即z1=a1+b1i,z2=a2+b2i,z1+z2=?猜想归纳(a+bi)+(c+di)=(a+c)+(b+d)i复数的加法法则:点评点评:(1 1)复数的加法运算法则是一种规定。当)复数的加法运算法则是一种规定。当b=0b=0,d=0 d=0时与实数加法法则保持一致。时与实数加法法则保持一致。(2 2)两个复数的和仍然是一个复数。对于复数的加法可)两个复数的和仍然是一个复数。
7、对于复数的加法可以推广到多个复数相加的情形。以推广到多个复数相加的情形。第十一张,PPT共三十页,创作于2022年6月点评:点评:实数加法运算的交换律、结合律在复数集实数加法运算的交换律、结合律在复数集C C中依然成中依然成立。立。问题探索设问设问3、复数的加法满足交换律,结合律吗?复数的加法满足交换律,结合律吗?即:对于任意的 ,有则Z1+Z2=(a1+a2)+(b1+b2)i,Z2+Z1=(a2+a1)+(b2+b1)i证:设Z1=a1+b1i,Z2=a2+b2i,Z3=a3+b3i(a1,a2,a3,b1,b2,b3R)第十二张,PPT共三十页,创作于2022年6月类比猜想设问设问4、类
8、比复数的加法法则、类比复数的加法法则,你认为你认为复数有减法吗复数有减法吗?复数复数的减法法则如何呢?的减法法则如何呢?复数的减法规定是加法的逆运算,即把满足(c+di)+(x+yi)=a+bi的复数x+yi 叫做复数a+bi减去复数c+di的差,记作(a+bi)(c+di)(a+bi)(c+di)=(ac)+(bd)i点评:点评:根据复数相等的定义,我们可以得出复数的减法法则,根据复数相等的定义,我们可以得出复数的减法法则,且知两个复数的差是唯一确定的复数。且知两个复数的差是唯一确定的复数。复数的减法法则:第十三张,PPT共三十页,创作于2022年6月归纳:复数可以求和差,虚实各自相加减。归
9、纳总结一、复数加法与减法的运算法则第十四张,PPT共三十页,创作于2022年6月例1、计算(23i)+(-83i)(34i)解:(23i)+(-83i)(34i)=(283)+(-33+4)i=-92i .例题讲解点评:点评:复数可以求和差,虚实各自相加减复数可以求和差,虚实各自相加减第十五张,PPT共三十页,创作于2022年6月练习:计算下列各式 (2+4i)+(3-4i)(-3+2i)-(-3-2i)(4-i)+3i 5(3+2i)(34i)+(2+i)(15i)(2i)(2+3i)+4i学以致用第十六张,PPT共三十页,创作于2022年6月复数复数z=a+bi直角坐标系中的点直角坐标系中
10、的点Z(a,b)一一对应一一对应平面向量平面向量一一对应一一对应一一对应一一对应xyobaZ(a,b)z=a+bi二、复数加法与减法运算的几何意义?由此出发探讨复数由此出发探讨复数加法的几何意义加法的几何意义第十七张,PPT共三十页,创作于2022年6月xoyZ1(a,b)Z2(c,d)Z(a+c,b+d)z z1 1+z+z2 2=OZ=OZ1 1+OZ+OZ2 2=OZ=OZ符合向符合向量加法量加法的平行的平行四边形四边形法则法则.1.1.复数复数加法加法运算的几何意义运算的几何意义?问题探索结论:复数的加法可以按照向量的加法来进行结论:复数的加法可以按照向量的加法来进行结论:复数的加法可
11、以按照向量的加法来进行结论:复数的加法可以按照向量的加法来进行,复数的和复数的和复数的和复数的和对应向量的和。对应向量的和。对应向量的和。对应向量的和。第十八张,PPT共三十页,创作于2022年6月xoyZ1(a,b)Z2(c,d)复数复数z2z1向量向量Z1Z2符合向符合向量减法量减法的三角的三角形法则形法则.2.2.复数复数减法减法运算的几何意义运算的几何意义?问题探索结论:复数的差结论:复数的差结论:复数的差结论:复数的差Z Z2 2Z Z 1 1 与连接两个向量终点并指向被减数与连接两个向量终点并指向被减数与连接两个向量终点并指向被减数与连接两个向量终点并指向被减数的向量对应的向量对应
12、的向量对应的向量对应.第十九张,PPT共三十页,创作于2022年6月二、复数加法与减法运算的几何意义xyZ Z 1Z Z 2 Z Z 0(1)xyZ Z 1Z Z 2 0(2)复数的和对应向量的和复数的和对应向量的和 复数的差对应向量的差复数的差对应向量的差归纳总结第二十张,PPT共三十页,创作于2022年6月练习、如图的向量 对应复数z,试作出下列运算的结果对应的向量 xyoz几何意义运用第二十一张,PPT共三十页,创作于2022年6月v例3 已知 求向量 对应的复数.v变式1 已知复平面内一平行四边形AOBC顶点A,O,B对应复数是-3+2i,0,2+i,求点C对应的复数.几何意义运用第二
13、十二张,PPT共三十页,创作于2022年6月变式1 已知复平面内一平行四边形AOBC顶点A,O,B对应复数是-3+2i,0,2+i,求点C对应的复数.解:复数-3+2i,2+i,0对应点A(-3,2),B(2,1),O(0,0),如图.点C对应的复数是-1+3i 在平行四边形 AOBC中,xyA 0CB几何意义运用第二十三张,PPT共三十页,创作于2022年6月v第四个顶点对应的复数是6+4i,-4+6i,-2-i变式 已知复平面内一平行四边形ABC三个顶点对应复数是-3+2i,2+i,1+5i求第四个对应的复数.Xy第二十四张,PPT共三十页,创作于2022年6月xoyZ1(a,b)Z2(c
14、,d)复数复数z2z1向量向量Z1Z2符合向符合向量减法量减法的三角的三角形法则形法则.2.2.复数复数减法减法运算的几何意义运算的几何意义?|z1-z2|表示什么表示什么?表示复平面上两点表示复平面上两点Z Z1 1,Z,Z2 2的距离的距离转化推广第二十五张,PPT共三十页,创作于2022年6月复平面内两点间距离xyZ Z 1Z Z 2 0设Z Z =a+bi,=c+di 它们在复平面内分别对应于点Z Z1 1,Z,Z2 2 1Z Z 2v复平面内两点距离就是对应两个复数的差的模转化推广第二十六张,PPT共三十页,创作于2022年6月(1)|z(1)|z(1+2i)|(1+2i)|(2)|
15、z+(1+2i)|(2)|z+(1+2i)|已知复数已知复数z z对应点对应点A,A,说明下列各式所说明下列各式所表示的几何意义表示的几何意义.点点A A到点到点(1,2)(1,2)的距离的距离点点A A到点到点(1,1,2)2)的距离的距离第二十七张,PPT共三十页,创作于2022年6月(3)|z(3)|z1|1|(4)|z+2i|(4)|z+2i|点点A A到点到点(1,0)(1,0)的距离的距离点点A A到点到点(0,(0,2)2)的距离的距离第二十八张,PPT共三十页,创作于2022年6月复数加减复数加减复平面的点坐标运算复平面的点坐标运算一一对应一一对应一一对应一一对应一一对应一一对应平面向量加减平面向量加减1.复数代数形式的加减运算:复数可以求和差,虚实各自相加减。2.复数加减运算的几何意义:课堂小结第二十九张,PPT共三十页,创作于2022年6月感感谢谢大大家家观观看看17.10.2022第三十张,PPT共三十页,创作于2022年6月