《2021年小学数学奥数题100题(附答案).docx》由会员分享,可在线阅读,更多相关《2021年小学数学奥数题100题(附答案).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品word 可编辑资料 - - - - - - - - - - - - -学校数学奥数题100题( 附答案)1.765×213 ÷27 765 ×327 ÷27解:原式=765÷27 ×(213+327)= 765÷27 ×540=765×20=153002.(9999 9997 9001)-(1 3 999)解:原式 =( 9999-999)+( 9997-997)+( 9995-995)+(9001-1)=9000+9000+.+9000(500个 9000)=45000003 19981999
2、215;19991998-19981998×19991999解:( 19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004 (873 ×477-198)÷(476 ×874 199)解: 873 ×477-198=476×874 199第页共页第 1 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 -
3、- - - - - - - - - - - -因此原式=15 2000×1999-1999×1998 1998×1997-1997×1996 2×1解:原式1999×( 2000 1998) 1997×( 1998 1996) 3 ×(4 2 ) 2×1( 1999 1997 3 1 )×2 2000000;6 297 293 289 209解:( 209+297) *23/2=58197运算:解:原式= ( 3/2) * ( 4/3) * ( 5/4) *(100/99)*(1/2)*(2/3
4、)*(3/4)*(98/99)=50*(1/99)=50/99 8.解:原式= ( 1*2*3) /(2*3*4)=1/49. 有 7 个数,它们的平均数为18 ;去掉一个数后,剩下6 个数的平均数为19 ;再去掉一个数后,剩下的5 个数的平均数为 20 ;求去掉的两个数的乘积;第页共页第 2 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数为12和 14它们的乘积为12*14=16810. 有七个排成一列的数,它
5、们的平均数为30 ,前三个数的平均数为28 ,后五个数的平均数为33 ;求第三个数;解: 28 ×3 33 ×5-30×7=39;11. 有两组数,第一组9 个数的和为63 ,其次组的平均数为11 ,两个组中全部数的平均数为8;问:其次组有多少个数? 解:设其次组有x 个数, 就63 11x=8×( 9+x ),解得x=3 ; 12 小明参与了六次测验,第三.第四次的平均分比前两次的平均分多2 分,比后两次的平均分少2 分;假如后三次平均分比前三次平均分多3 分,那么第四次比第三次多得几分?解:第三.四次的成果和比前两次的成果和多4 分,比后两次的成果和
6、少4 分,推知后两次的成果和比前两次的成果和多 8 分;由于后三次的成果和比前三次的成果和多9 分 ,所以第四次比第三次多9 8=1(分);第页共页第 3 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -13. 妈妈每4 天要去一次副食商店,每5 天要去一次百货商店;妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9 次 , 9÷20 ×7=3.15(次);14. 乙.丙两数的平均数与甲数之比为13 7 ,求甲.乙.丙三数的平均数与甲数之比;解:以甲数为7 份,就乙.丙两数共13
7、 ×2 26 (份)所以甲乙丙的平均数为(26+7) /3=11(份)因此甲乙丙三数的平均数与甲数之比为11 : 7 ;15. 五年级同学参与校办工厂糊纸盒劳动,平均每人糊了76个;已知每人至少糊了70个,并且其中有一个同学糊了88个,假如不把这个同学运算在内,那么平均每人糊74个;糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学运算在内时,由于他比其余同学的平均数多88-74 14 (个),而使大家的平均数增加了 76 74=2(个),说明总人数为14 ÷2 7 (人);因此糊得最快的同学最多糊了74 ×6-70×5 94 (个);第页共页第
8、 4 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -16. 甲.乙两班进行越野行军竞赛,甲班以4.5千米时的速度走了路程的一半,又以5.5千米时的速度走完了另一半;乙班在竞赛过程中,一半时间以4.5千米时的速度行进,另一半时间以5.5千米时的速度行进;问:甲.乙两班谁将获胜?解:快速行走的路程越长,所用时间越短;甲班快.慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜;17. 轮船从A城到B 城需行3 天,而从B 城到A 城 需行4 天;从 A 城放一个无动力的木筏,它漂到B 城需多少天
9、?解:轮船顺流用3 天,逆流用4 天,说明轮船在静水中行4 3 1(天),等于水流3 4 7 (天),即船速为流速的7 倍;所以轮船顺流行3 天的路程等于水流3 3 ×7 24( 天)的路程,即木筏从A 城 漂到B 城需24天;18. 小红和小强同时从家里动身相向而行;小红每分走52米,小强每分走70米,二人在途中的A 处相遇;如小红提前4 分动身,且速度不变,小强每分走90米,就两人仍在A 处相遇;小红和小强两人的家相距多少米?第页共页第 5 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -解:由于
10、小红的速度不变,相遇地点不变,所以小红两次从动身到相遇的时间相同;也就为说,小强其次次比第一次少走 4 分;由( 70 ×4 )÷( 90 70 ) 14 (分)可知,小强其次次走了14分,推知第一次走了18分,两人的家相距( 52 70 )×18 2196(米);19. 小明和小军分别从甲.乙两地同时动身,相向而行;如两 人按原定速度前进,就4 时相遇;如两人各自都比原定速度多 1 千米时,就3 时相遇;甲.乙两地相距多少千米?解:每时多走1 千米,两人3 时共多走6 千米,这6 千米相当于两人按原定速度1 时走的距离;所以甲.乙两地相距6×4 24
11、(千米)20. 甲.乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去;相遇后甲比原先速度增加2 米秒, 乙比原先速度削减2 米秒, 结果都用24秒同时回到原地;求甲原先的速度;第页共页第 6 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -解:由于相遇前后甲.乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇;设甲原先每秒跑x 米,就相遇后每秒跑(x 2 )米;由于甲 在相遇前后各跑了24秒,共跑400米,所以有24x 24 ( x 2
12、) 400 ,解得x=7又 1/3米;21. 甲.乙两车分别沿大路从A , B 两站同时相向而行,已知 甲车的速度为乙车的1.5倍,甲.乙两车到达途中C 站的时刻分别为5 : 00和 16 : 00 ,两车相遇为什么时刻?解: 9 24 ;解:甲车到达 C 站时,乙车仍需 16-5 11 (时) 才能到达 C 站;乙车行 11 时的路程,两车相遇需 11 ÷(1 1.5 ) 4.4 (时) 4 时 24 分,所以相遇时刻为 9 24 ;22. 一列快车和一列慢车相向而行,快车的车长为280米, 慢车的车长为385米;坐在快车上的人观察慢车驶过的时间为11秒,那么坐在慢车上的人观察快车
13、驶过的时间为多少秒?解:快车上的人观察慢车的速度与慢车上的人观察快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11第页共页第 7 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -23. 甲.乙二人练习跑步,如甲让乙先跑10米,就甲跑5 秒可追上乙;如乙比甲先跑2 秒,就甲跑4 秒能追上乙;问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2): 4=6: 4所以甲每秒跑6 米,乙每秒跑4 米 ;24 甲.乙.丙三人同时从A向 B 跑,当甲跑到B 时,乙离B 仍有20米,丙
14、离B 仍有40米;当乙跑到B 时,丙离B 仍有 24米;问:( 1 )A ,B 相距多少米?( 2 )假如丙从A 跑到B 用 24秒,那么甲的速度为多少?解:解: ( 1 )乙跑最终20米时,丙跑了40-24 16 (米),丙的速度25. 在一条大路上,小明骑车与小光同向而行,小明骑车速度为小光速度的3 倍,每隔10分有一辆公共汽车超过小光,每隔 20分有一辆公共汽车超过小明;已知公共汽车从始发站每 次间隔同样的时间发一辆车,问:相邻两车间隔几分?第页共页第 8 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -
15、解:设车速为a,小光的速度为b ,就小明骑车的速度为3b ;依据追及问题“追准时间×速度差追及距离”,可列方程10 ( a b ) 20 ( a 3b ),解得 a 5b ,即车速为小光速度的 5 倍;小光走 10 分相当于车行 2 分,由每隔 10 分有一辆车超过小光知,每隔 8 分发一辆车;26. 一只野兔逃出 80 步后猎狗才追它,野兔跑 8 步的路程猎狗只需跑 3 步,猎狗跑 4 步的时间兔子能跑 9 步;猎狗至少要跑多少步才能追上野兔?解:狗跑 12 步的路程等于兔跑 32 步的路程,狗跑 12 步的时间等于兔跑 27 步的时间;所以兔每跑 27 步,狗追上 5 步(兔步)
16、,狗要追上 80 步(兔步)需跑 27 ×(80 ÷5 ) 80÷8×3 192 (步);27. 甲.乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18 秒 ,2 分后又用 15 秒从乙身边开过;问:( 1 )火车速度为甲的速度的几倍?第页共页第 9 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -( 2 )火车经过乙身边后,甲.乙二人仍需要多少时间才能相遇?解:( 1 )设火车速度为a 米秒,行人速度为b 米秒,就由火车的为行
17、人速度的11倍;( 2 )从车尾经过甲到车尾经过乙,火车走了135秒,此段 路程一人走需1350×11=1485(秒),由于甲已经走了135 秒,所以剩下的路程两人走仍需( 1485 135 )÷2 675(秒);28. 辆车从甲地开往乙地,假如把车速提高20 ,那么可以比原定时间提前1 时到达;假如以原速行驶100千米后再将车速提高30 ,那么也比原定时间提前1 时到达;求甲.乙两地的距离;29. 完成一件工作,需要甲干5 天.乙干6 天,或者甲干7天.乙干2 天;问:甲.乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天 )乙需要 (6*7-2*5)/2=
18、16(天)30 一水池装有一个放水管和一个排水管,单开放水管5 时可将空池灌满,单开排水管7 时可将满池水排完;假如放水第页 共 32 页第 10 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -管开了2 时后再打开排水管,那么再过多长时间池内将积有半池水?31 小松读一本书,已读与未读的页数之比为3 4 ,后来又读了33页,已读与未读的页数之比变为5 3 ;这本书共有多少页?解:开头读了3/7后来总共读了5/8 33/(5/8-3/7)=33/(11/56)=56*3=168页32 一件工作甲做6 时.乙做1
19、2时可完成,甲做8 时.乙做 6 时也可以完成;假如甲做3 时后由乙接着做,那么仍需多少时间才能完成?解:甲做2 小时的等于乙做6 小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙仍需要(1-3/10)/(1/30)=21天才可以完成;33. 有一批待加工的零件,甲单独做需4 天,乙单独做需5 天,假如两人合作,那么完成任务时甲比乙多做了20个零件; 这批零件共有多少个?解:甲和乙的工作时间比为4 : 5 ,所以工作效率比为5: 4工作量的比也5 : 4 ,把甲做的看作5 份,乙做的看作4 份第页 共 32 页第 11 页,共 32 页 - - - - - - -
20、- - -精品word 可编辑资料 - - - - - - - - - - - - -那么甲比乙多1 份,就为20个;因此9 份 就为180个所以这批零件共180个34. 挖一条水渠,甲.乙两队合挖要6 天完成; 甲队先挖3 天,乙队接着解:依据条件,甲挖6 天 乙挖2 天可挖这条水渠的3/5所以乙挖4 天 能挖2/5因此乙1 天能挖1/10,即乙单独挖需要10天;甲单独挖需要1/ ( 1/6-1/10) =15天;35. 修一段大路,甲队独做要用40天,乙队独做要用24天;现在两队同时从两端开工,结果在距中点750米处相遇;这 段大路长多少米?36. 有一批工人完成某项工程,假如能增加8 个
21、人,就 10天就能完成;假如能增加 3 个人,就要 20 天才能完成;现在只能增加 2 个人,那么完成这项工程需要多少天?解:将1 人1 天完成的工作量称为1 份;调来3 人与调来8人相比,10天少完成(8-3 )×10=50(份);这50份仍需调来3 人干10天,所以原先有工人50 ÷10 3 2 (人),第页 共 32 页第 12 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -全部工程有 ( 2+8)×10=100 (份) ;调来2 人需100 ÷( 2+2)=25
22、(天);37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占 32% 16 ÷32%=5038.解: 1/2*1/3=1/6所以三角形ABC的面积为三角形AED面积的6 倍 ;39. 下面9 个图中,大正方形的面积分别相等,小正方形的面积分别相等;问:哪几个图中的阴影部分与图(1 )阴影部分面积相等?解:( 2)( 4 )( 7 )( 8 )( 9 )40. 观看以下各串数的规律,在括号中填入适当的数 2, 5 , 11 , 23 , 47 ,(),解:括号内填95规律:数列里地每一项都等于它前面一项的2 倍减1第页 共 32 页第 13 页,共 32 页
23、- - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -41. 在下面的数表中,上.下两行都为等差数列;上.下对应的两个数字中,大数减小数的差最小为几?解: 1000-1=999997-995=992每次削减7 , 999/7=1425所以下面减上面最小为51333-1=13321332/7=190所以上面减下面最小为22因此这个差最小为2 ;42. 假如四位数68 能被73整除,那么商为多少?解:估量这个商的十位应当为8 ,看个位可以知道为6因此这个商为86 ;43. 求各位数字都为7 ,并能被63整除的最小自然数;解: 63=7*9
24、所以至少要9 个 7 才行(由于各位数字之和必需为9 的倍数)44. 1 ×2 ×3 ××15能否被9009整除?解:能;将 9009分解质因数第页 共 32 页第 14 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -9009=3*3*7*11*1345. 能否用1 ,2 ,3 ,4 ,5 ,6 六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能;由于1 2 3 4 5 6 21 ,假如能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个
25、为 16 ,一个为5 ,而最小的三个数字之和1 2 3 6 5 ,所以不行能组成;46. 有一个自然数,它的最小的两个约数之和为4,最大的两个约数之和为100 ,求这个自然数;解:最小的两个约数为1 和3 ,最大的两个约数一个为这个自然数本身,另一个为这个自然数除以3 的商;最大的约数与其次大47.100以内约数个数最多的自然数有五个,它们分别为几?解:假如恰有一个质因数,那么约数最多的为26=64,有7个约数;假如恰有两个不同质因数,那么约数最多的为23 ×32 72和 25 ×3 96 ,各有12个约数;第页 共 32 页第 15 页,共 32 页 - - - - -
26、- - - - -精品word 可编辑资料 - - - - - - - - - - - - -假如恰有三个不同质因数,那么约数最多的为22 ×3×5 60 ,22 ×3 ×7 84和 2 ×32 ×5=90,各有12个约数;所以100以内约数最多的自然数为60 , 72 , 84 , 90和 96 ;48. 写出三个小于20的自然数,使它们的最大公约数为1 ,但两两均不互质;解: 6 , 10 , 1549. 有 336个苹果.252个桔子.210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解: 42份;
27、每份有苹果8 个,桔子6 个 ,梨5 个;50. 三个连续自然数的最小公倍数为168 ,求这三个数;解: 6 ,7 ,8 ;提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积;而相邻三个自然数,如其中只有一 个偶数,就其最小公倍数等于这三个数的乘积;如其中有两 个偶数,就其最小公倍数等于这三个数乘积的一半;51. 一副扑克牌共54张,最上面的一张为红桃K;假如每次把最上面的12张牌移到最下面而不转变它们的次序及朝向, 那么,至少经过多少次移动,红桃K 才会又显现在最上面?第页 共 32 页第 16 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 -
28、- - - - - - - - - - - -解:由于54 ,12=108,所以每移动108张牌,又回到原先的状况; 又由于每次移动12张牌, 所以至少移动108 ÷12=9(次);52. 爷爷对小明说:“我现在的年龄为你的7 倍,过几年为你 的 6 倍, 再过如干年就分别为你的5 倍.4 倍.3 倍.2 倍;”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁;提示:爷爷和小明的年龄差为 6, 5 , 4 , 3 , 2 的公倍数,又考虑到年龄的实际情形,取公倍数中最小的;(60岁)53. 某质数加6 或减6 得到的数仍为质数,在50以内你能找出几个这样的质数?并将它们写出来
29、;解: 11 , 13 , 17 , 23 , 37 , 47 ;54. 在放暑假的8 月份,小明有五天为在姥姥家过的;这五天的日期除一天为合数外,其它四天的日期都为质数;这四个质数分别为这个合数减去1 ,这个合数加上1 ,这个合数乘上2 减去1 ,这个合数乘上2 加上1 ;问:小明为哪几天在姥姥家住的?第页 共 32 页第 17 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -解: 设这个合数为a,就四个质数分别为( a 1 ),( a 1),( 2a 1 ),( 2a 1 );由于(a 1)与( a 1 )
30、为相差2 的质数,在1 31中有五组:3 , 5 ; 5 , 7 ; 11 , 13 ; 17 , 19 ; 21 , 31 ;经试算,只有当a 6 时,满意题意,所以这 五天为8 月5 , 6 , 7 , 11 , 13日;55. 有两个整数,它们的和恰好为两个数字相同的两位数,它们的乘积恰好为三个数字相同的三位数;求这两个整数; 解: 3 , 74 ; 18 , 37 ;提示:三个数字相同的三位数必有因数111 ;由于111 3 ×37 ,所以这两个整数中有一个为37的倍数(只能为37或74 ),另一个为3 的倍数;56. 在一根100厘米长的木棍上,从左至右每隔6 厘米染一个红
31、点,同时从右至左每隔5 厘米也染一个红点,然后沿红点 处将木棍逐段锯开;问:长度为1 厘米的短木棍有多少根? 解:由于100能被5 整除, 所以可以看做都为自左向右染色;由于6 与 5 的最小公倍数为30 ,即在30厘米处同时染上红点,所以染色以30厘米为周期循环显现;一个周期的情形如下图所示:第页 共 32 页第 18 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -由上图知道,一个周期内有2 根 1 厘米的木棍;所以三个周期即90厘米有6 根,最终10厘米有1 根 ,共7 根 ;57. 某种商品按定价卖出可
32、得利润960元,如按定价的80 出售,就亏损832元;问:商品的购入价为多少元?解: 8000元;按两种价格出售的差额为960 832=1792(元),这个差额为按定价出售收入的20 ,故按定价出售的收入为1792÷20 =8960(元),其中含利润960元,所以购入价为8000元;58. 甲桶的水比乙桶多20 ,丙桶的水比甲桶少20 ;乙.丙两桶哪桶水多?解:乙桶多;59. 学校数学竞赛出了A , B, C 三道题,至少做对一道的有25人,其中做对A 题 的有10人,做对B 题的有13人,做对 C 题 的有15人;假如二道题都做对的只有1 人,那么只做对两道题和只做对一道题的各有多
33、少人?解:只做对两道题的人数为(10 13 15 )-25 -2×1 11(人),只做对一道题的人数为25 11 1=13(人);第页 共 32 页第 19 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -60. 学校举办棋类竞赛,设象棋.围棋和军棋三项,每人最多参与两项;依据报名的人数,学校打算对象棋的前六名.围棋的前四名和军棋的前三名发放奖品;问:最多有几人获奖?最少有几人获奖?解:共有13人次获奖,故最多有13人获奖;又每人最多参加两项,即最多获两项奖,因此最少有7 人获奖;61. 在前1000
34、个自然数中,既不为平方数也不为立方数的自然数有多少个?解:由于312 1000 322 , 103 1000,所以在前1000个自然数中有31个平方数,10个立方数,同时仍有3 个六次方数( 16 ,26 ,36 );所求自然数共有1000( 31 10 ) 3 962 (个);62. 用数字0 ,1 ,2 ,3 ,4 可以组成多少个不同的三位数(数字答应重复)?解: 4*5*5=100个63. 要从五年级六个班中评比出学习.体育.卫生先进集体各一个,有多少种不同的评比结果?解: 6*6*6=216种第页 共 32 页第 20 页,共 32 页 - - - - - - - - - -精品wor
35、d 可编辑资料 - - - - - - - - - - - - -64. 已知15120=24×33 ×5 ×7,问: 15120共有多少个不同的约数?解:15120的约数都可以表示成2a ×3b ×5c ×7d的形式, 其中 a=0, 1 , 2 , 3 , 4 , b=0, 1 , 2, 3, c=0 , 1 , d=0, 1 ,即 a, b , c , d 的可能取值分别有5,4,2 ,2 种,所以 共有约数5 ×4 ×2 ×2=80(个);65. 大林和小林共有小人书不超过50本,他们各自有小人书
36、的数目有多少种可能的情形?解:他们一共可能有0 50本书,假如他们共有n 本书,就大林可能有书0 n 本,也就为说这n 本书在两人之间的分 配情形共有(n 1 )种;所以不超过50本书的全部可能的安排情形共有1 2 3 51=1326(种);66. 在右图中,从 A 点沿线段走最短路线到B 点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为为不同走法;)解: 80种;提示:从A 到B 共有10条不同的路线,每条路 线长5 个线段;每次走一个或两个线段,每条路线有8 种 走法,所以不同走法共有8 ×10=80(种);第页 共 32 页第 21 页,共 32 页 -
37、- - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -67. 有五本不同的书,分别借给3 名同学,每人借一本,有多少种不同的借法? 解: 5*4*3=60种68 有三本不同的书被5 名同学借走,每人最多借一本,有多少种不同的借法?解: 5*4*3=60种69. 恰有两位数字相同的三位数共有多少个?解:在900个三位数中,三位数各不相同的有9 ×9×8 648(个),三位数全相同的有9 个,恰有两位数相同的有900 648 9=243(个);70. 从 1 , 3 , 5 中任取两个数字,从2 , 4 , 6 中任取两个
38、数字,共可组成多少个没有重复数字的四位数?解:三个奇数取两个有3 种方法,三个偶数取两个也有3 种方法;共有3 ×3×4! =216(个);71. 左下图中有多少个锐角?解: C(11、2)=55个第页 共 32 页第 22 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?解:c(10、2)-10=35种73. 一牧场上的青草每天都匀速生长;这片青草可供27头牛吃 6 周,或供23头牛吃9 周;那么可供21头牛吃几周? 解
39、:将1 头牛1 周吃的草看做1 份 ,就27头牛6 周吃162 份 ,23 头牛9 周吃207份,这说明3 周时间牧场长草207-162 45 (份),即每周长草15份,牧场原有草162 15 ×6 72 (份);21头牛中的15头牛吃新长出的草,剩下的6 头牛吃原有的草,吃完需72 ÷6 12 (周);74. 有一水池,池底有泉水不断涌出;要想把水池的水抽干,10台抽水机需抽8 时, 8 台抽水机需抽12时;假如用6 台抽水机,那么需抽多少小时?解:将1 台抽水机1 时抽的水当做1 份;泉水每时涌出量为( 8 ×12-10×8 )÷( 12-
40、8) =4 (份);水池原有水 ( 10-4)×8 48(份),6 台抽水机需抽48 ÷( 6-4 )=24(时);75. 规定a*b=(b a) ×b ,求 (2*3)*5;第页 共 32 页第 23 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -解: 2*3=(3+2)*3=1515*5=(15+5)*5=10076.1 ! +2 ! +3 ! +99!的个位数字为多少?解: 1 ! +2 ! +3 ! +4 ! =1+2+6+24=33从 5 !开头,以后每一项的个位数字都
41、为0所以1 ! +2 ! +3 ! +99!的个位数字为3 ;77 ( 1 )有一批四种颜色的小旗,任意取出三面排成一行, 表示各种信号;在 200 个信号中至少有多少个信号完全相同?解 : 4*4*4=64 200 ÷64=38所以至少有4 个信号完全相同;77. ( 2 )在今年入学的一年级新生中有370多人为在同一年诞生的;试说明:他们中至少有2 个人为在同一天诞生的;解:由于一年最多有366天,看做366个抽屉由于370>366、所以依据抽屉原理至少有2 个人为在同一天诞生的;第页 共 32 页第 24 页,共 32 页 - - - - - - - - - -精品word 可编辑资料 - - - - - - - - - - - - -78. 从前11个自然数