《力动量与角动量优秀PPT.ppt》由会员分享,可在线阅读,更多相关《力动量与角动量优秀PPT.ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、力动量与角动量第1页,本讲稿共33页第三章第三章 动量与角动量动量与角动量3.1 3.1 冲量与动量定律冲量与动量定律3.2 3.2 动量守恒定理动量守恒定理3.6 3.6 质点的角动量和角动量定理质点的角动量和角动量定理3.7 3.7 角动量守恒定理角动量守恒定理3.4 3.4 质心质心第2页,本讲稿共33页 本本章章从从牛牛顿顿力力学学出出发发给给出出动动量量和和角角动动量量的的定定义义,推推导导这这两两个个守守恒恒定定律律,并并讨讨论论它它们们在在牛牛顿顿力力学学中中的的应用。下一章讨论能量。应用。下一章讨论能量。能能量量、动动量量和和角角动动量量是是最最基基本本的的物物理理量量。它它们
2、们的的守守恒恒定定律律是是自自然然界界中中的的基基本本规规律律,适适用用范范围围远远远远超超出了牛顿力学。出了牛顿力学。动量描述平动,角动量描述转动。动量描述平动,角动量描述转动。力力的的时时间间积积累累(冲冲量量)引引起起动动量量的的变变化化;力力矩的时间积累引起角动量的变化。矩的时间积累引起角动量的变化。第3页,本讲稿共33页3.1 3.1 冲量(冲量(impulseimpulse)与动量()与动量(momentummomentum)定理)定理力的时间积累,即力的时间积累,即冲量冲量动量定理动量定理有限时间内有限时间内,initial -final initial -final冲量的方向冲
3、量的方向=动量动量增量增量的方向的方向第4页,本讲稿共33页平均冲力平均冲力 例例11:一篮球质量:一篮球质量0.58kg0.58kg,从,从2.0m2.0m高度下落,到达地面高度下落,到达地面后,以同样速率反弹,接触时间仅后,以同样速率反弹,接触时间仅0.019s0.019s,求:对地,求:对地平均冲力?平均冲力?解:篮球到达地面的速率解:篮球到达地面的速率(m/s)(N)在相同的冲量情况下减小冲力的方法?在相同的冲量情况下减小冲力的方法?第5页,本讲稿共33页【例例2 2】质质量量m m=140g=140g的的垒垒球球以以速速率率 v v=40m/s40m/s沿沿水水平平方方向向飞飞向向击
4、击球球手手,被被击击后后以以相相同同速速率率沿沿仰仰角角 6060o o飞飞出出。求求棒棒对对垒垒球球的的平平均均打打击击力力。设设棒棒和和球球的的接接触触时间为时间为 t t=1.2 ms=1.2 ms。60ov2v1第6页,本讲稿共33页 因因打打击击力力很很大大,所所以以由由碰碰撞撞引引起起的的质质点点的的动动量改变,基本上由打击力的冲量决定。量改变,基本上由打击力的冲量决定。mv160omv2mg t打击力冲量打击力冲量 重力、阻力的冲量可以忽略。重力、阻力的冲量可以忽略。F t F t合力冲量合力冲量第7页,本讲稿共33页平平均均打打击击力力约约为为垒垒球球自自重重的的5900590
5、0倍倍!在在碰碰撞撞过过程程中中,物体之间的碰撞冲力是很大的。物体之间的碰撞冲力是很大的。F tmv160omv230om=140g第8页,本讲稿共33页例例例例1 1:动量定理解释:动量定理解释:动量定理解释:动量定理解释“逆风行舟逆风行舟逆风行舟逆风行舟”。船船前前进进方方向向风吹来风吹来取一小块风取一小块风dm为研究对象为研究对象初初末末由牛顿第由牛顿第三定律三定律前前进进方方向向风对帆的冲量大小风对帆的冲量大小方向与方向与 相反相反第9页,本讲稿共33页3.2 3.2 动量守恒定理动量守恒定理共有共有N N个粒子,外力个粒子,外力用用 F F ,内力(即粒子,内力(即粒子之间的相互作用
6、)用之间的相互作用)用f f,则第,则第 i i 粒子的运动粒子的运动方程方程对所有对所有粒子求和粒子求和i jFiPi fi j fj i第10页,本讲稿共33页牛顿第三定律牛顿第三定律质点系的质点系的动量定理动量定理可应用坐标分量可应用坐标分量式求解:式求解:第11页,本讲稿共33页质点系所受合外力为零,总动量不随时间改变,即质点系所受合外力为零,总动量不随时间改变,即1.1.合外力为零,或外力与内力相比小很多;合外力为零,或外力与内力相比小很多;2.2.合外力沿某一方向为零;合外力沿某一方向为零;3.3.只适用于惯性系;只适用于惯性系;4.4.比牛顿定律更普遍的最基本的定律。比牛顿定律更
7、普遍的最基本的定律。第12页,本讲稿共33页*物物理理学学家家对对动动量量守守恒恒定定律律具具有有充充分分信信心心。每每当当出出现现违违反反动动量量守守恒恒的的反反常常现现象象时时,总总是是提提出出新新的的假假设设来来补补救救,结结果果也也总总是是以以有有所所新新发发现而胜利告终。现而胜利告终。实实验验表表明明:只只要要系系统统不不受受外外界界影影响响,这这些些过过程的动量守恒。程的动量守恒。*对对那那些些不不能能用用力力的的概概念念描描述述的的过过程程,例例如如光光子子与电子的碰撞、衰变、核反应等过程,与电子的碰撞、衰变、核反应等过程,【例】【例】在在 衰变中,反中微子的发现衰变中,反中微子
8、的发现第13页,本讲稿共33页例例1.1.水银小球水银小球m m竖直落在水平桌上,分成竖直落在水平桌上,分成质量相同的三份质量相同的三份,沿桌面运动沿桌面运动,其中两等分其中两等分的速度分别为的速度分别为v1 1和和v2 2,且相互垂直地散开,且相互垂直地散开.试求第三等分的速度大小和方向。试求第三等分的速度大小和方向。XY面系统动量守恒面系统动量守恒=0=0第14页,本讲稿共33页例例2.2.水平光滑铁轨上有一小车水平光滑铁轨上有一小车M M,长,长l,车端站有一,车端站有一人人m m,人和车原都不动。现人从车的一端走到另一端。,人和车原都不动。现人从车的一端走到另一端。问人和车各移动多少距
9、离问人和车各移动多少距离?分析:分析:动量守恒相对运动动量守恒相对运动x人地x车地x以地为参考系以地为参考系解:解:mv人地人地 MV车地车地=0m v人地 dt =M V车地 dt m x人地人地=M x车地车地x人车人车 x人地人地 -x车地车地第15页,本讲稿共33页抛手榴弹的过程抛手榴弹的过程C COXY 质质点点系系的的质质量量中中心心,简简称称质质心心。具具有有长长度度的的量量纲纲,描描述述与与质质点点系系有有关关的的某某一一空空间间点点的的位位置。置。质心运动反映了质点系的整体运动趋势。质心运动反映了质点系的整体运动趋势。3.4 3.4 质心质心第16页,本讲稿共33页对于对于N
10、个个质点质点组成的质点系:组成的质点系:直角坐标系中直角坐标系中第17页,本讲稿共33页 对于质量对于质量连续连续分布的物体分布的物体分量形式分量形式面分布面分布体分布体分布线分布线分布第18页,本讲稿共33页注意:注意:质心的位矢与参考系的选取有关。质心的位矢与参考系的选取有关。刚体的质心相对自身位置确定不变。刚体的质心相对自身位置确定不变。质量均匀的规则物体的质心在几何中心。质量均匀的规则物体的质心在几何中心。质心与重心不一样,物体尺寸不十分大时,质心与重心不一样,物体尺寸不十分大时,质质心与重心位置重合。心与重心位置重合。第19页,本讲稿共33页例例1 已知一半圆环半径为已知一半圆环半径
11、为 R,质量为,质量为M。解解 建坐标系如图建坐标系如图yxO d 取取 dldm=dl几何对称性几何对称性(1)弯曲铁丝的质心并不在铁丝上;弯曲铁丝的质心并不在铁丝上;(2)质质心心位位置置只只决决定定于于质质点点系系的的质质量量和和质质量量分分布布情情况况,与与其其他他因因素无关。素无关。说明说明求求 它的质心位置。它的质心位置。第20页,本讲稿共33页例例2:确定半径为确定半径为R的均质半球的质心位置。的均质半球的质心位置。解:解:建立如图所示坐标建立如图所示坐标 已已知知薄薄圆圆盘盘的的质质心心位位于于圆圆心心,取取厚厚度度为为dy的的薄薄圆盘为质量微元。圆盘为质量微元。RXYOdy第
12、21页,本讲稿共33页质质心心在在距距球球心心3R/8处。处。第22页,本讲稿共33页用叉积定义用叉积定义角动量角动量赝矢量赝矢量角动量方向角动量方向*微分公式微分公式角动量大小角动量大小相对于某一相对于某一固定点而言固定点而言vro1 1、角动量定义、角动量定义2 2、角动量定律、角动量定律3.6 3.6 质点的角动量和角动量定理质点的角动量和角动量定理第23页,本讲稿共33页 o力矩:赝矢量力矩:赝矢量方向用右手螺旋法规定方向用右手螺旋法规定角动量定理角动量定理第24页,本讲稿共33页-例例 3.16:3.16:开普勒第二定律开普勒第二定律 行星受力方向与矢径在一条行星受力方向与矢径在一条
13、 直线(中心力),故角动量守恒。直线(中心力),故角动量守恒。m 掠面速度掠面速度 dS/dtdS/dt 恒定恒定3.7 3.7 角动量守恒定理角动量守恒定理第25页,本讲稿共33页盘盘 状状 星星 系系第26页,本讲稿共33页球形原始气云具有初始角动量球形原始气云具有初始角动量L L,L在垂直于在垂直于L L方向,方向,引力使气云收缩,引力使气云收缩,但在与但在与L L平行的方向无此限制,所以形成了平行的方向无此限制,所以形成了旋转盘状结构。旋转盘状结构。角动量守恒,粒子的旋转速度角动量守恒,粒子的旋转速度,惯性离,惯性离心力心力,离心力与引力达到平衡,离心力与引力达到平衡,维持一定的半径。
14、维持一定的半径。第27页,本讲稿共33页比较比较 动量定理动量定理 动量矩定理动量矩定理形式上完全相同,所以记忆上就可简化。从动量定理变换到角动量形式上完全相同,所以记忆上就可简化。从动量定理变换到角动量定理,只需将相应的量变换一下,名称上改变一下。定理,只需将相应的量变换一下,名称上改变一下。(趣称(趣称 头上长角头上长角 尾部添矩)尾部添矩)第28页,本讲稿共33页1.8解:(1)y=x2-8 t=1s:t=2s:1.17 解:T=2R/v,=I/T=v/2R=6.61015Hz an=2r=(2)2R=9.11022ms-21.19 解:an=v2/R=0.25ms-2,a=(at2+an2)1/2 a与v的夹角=tg-1(an/at)=1280401.20 解:周长是半径r的函数,在rr+dr范围里,音轨长 度为 第29页,本讲稿共33页所用时间为所用时间为于是径向激光移动速率为于是径向激光移动速率为(1)(2)设音轨总长设音轨总长度为度为L,则,则第30页,本讲稿共33页1.22 解:解:依题意得矢量图:依题意得矢量图:东东西西由图可得:由图可得:方向:与人前进方向成方向:与人前进方向成600。第31页,本讲稿共33页第32页,本讲稿共33页第33页,本讲稿共33页