《数学初二知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《数学初二知识点总结归纳.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学初二知识点总结归纳 对知识与(方法)进行归纳(总结)是系统复习的中心工作。那么初二数学知识点有哪些,下面为大家带来数学初二知识点总结归纳,欢迎大家参考阅读哦,希望大家可以喜欢! 数学初二知识点总结 1、二元一次方程 二元一次方程 含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。 二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 2、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 二元一次方程组的解法 代入(消
2、元)法 加减(消元)法 一次函数与二元一次方程(组)的关系: 一次函数与二元一次方程的关系: 直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解 一次函数与二元一次方程组的关系: 二元一次方程组 的解可看作两个一次函数 和 的图象的交点。 当函数图象有交点时,说明相应的二元一次方程组有解; 当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。 数学初二知识点总结梳理 1、函数 一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。 2、自变量取值范围 使函数有意义的自变量
3、的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。 3、函数的三种表示法及其优缺点 关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 图象法 用图象表示函数关系的方法叫做图象法。 4、由函数关系式画其图像的一般步骤 列表:列表给出自变量与函数的一些对应值。 描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。 连线:根据自变量由小到大的顺序
4、,把所描各点用平滑的曲线连接起来。 5、正比例函数和一次函数 正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。 一次函数的图像: 所有一次函数的图像都是一条直线。 一次函数、正比例函数图像的主要特征 一次函数y=kx+b的图像是经过点(0,b)的直线; 正比例函数y=kx的图像是经过原点(0,0)的直线。 正比例函数的性质 一般地,正比例函数 有下列性质: 当k0时,图像经过第一、
5、三象限,y随x的增大而增大; 当k0时,图像经过第二、四象限,y随x的增大而减小。 一次函数的性质 一般地,一次函数 有下列性质: 当k0时,y随x的增大而增大; 当k0时,y随x的增大而减小。 正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。 确定一个一次函数,需要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解这类问题的一般方法是待定系数法. 一次函数与一元一次方程的关系 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k0)。当
6、函数值为0时,即kx+b=0就与一元一次方程完全相同。 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。 初二数学学习技巧 敢于表达自己的想法。在高中数学学习中,学生会遇到很多解决问题的技巧。也许这个方法对别人来说不是很熟悉,你知道。那么你需要学生敢于表达自己的想法,这样你才能掌握更多的技能。它也可以激发学生的学习爱好,如果一个班是满的。是老师在说话,课堂气氛很沉闷,学生的学习效率也很低。 学会看题 高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。 有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。 数学初二知识点总结归纳