《2022年一元一次不等式应用题练习.docx》由会员分享,可在线阅读,更多相关《2022年一元一次不等式应用题练习.docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载一元一次不等式应用题练习:1(2022.黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情 ”某单位给某乡中学校捐献一批饮用水和蔬菜共 菜多 80 件(1)求饮用水和蔬菜各有多少件?320 件,其中饮用水比蔬(2)现方案租用甲、乙两种货车共 8 辆,一次性将这批饮用水和蔬菜全部运往该乡中学校 已知每辆甲种货车最多可装饮用水40 件和蔬菜 10 件,每辆乙种货车最多可装饮用水和蔬菜各 20 件就运输部门支配甲、乙两种货车时有几种方案?请你帮忙设计出来;(3)在(2)的条件下,假
2、如甲种货车每辆需付运费400 元,乙种货车每辆需付运费 360 元运输部门应挑选哪种方案可使运费最少?最少运费是多少元?2(2022.桂林) “全民阅读 ”深化人心,好读书,读好书,让人终身受益为满足同学们的读书需求, 学校图书馆预备到新华书店选购文学名著和动漫书两类图书经明白, 20 本文学名著和 40 本动漫书共需 1520 元,20 本文学名著比 20本动漫书多 440 元(注:所选购的文学名著价格都一样,一样)(1)求每本文学名著和动漫书各多少元?所选购的动漫书价格都细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 25 页 - -
3、 - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载(2)如学校要求购买动漫书比文学名著多20 本,动漫书和文学名著总数不低于72 本,总费用不超过 2000 元,恳求出全部符合条件的购书方案3(2022.达州)学校为了嘉奖初三优秀毕业生,方案购买一批平板电脑和一批学习机,经投标, 购买 1 台平板电脑比购买 电脑和 3 台学习机共需 8400 元3 台学习机多 600 元,购买 2 台平板(1)求购买 1 台平板电脑和 1 台学习机各需多少元?(2)学校依据实际情形,打算购买平板电脑和学习机共100 台,要求购
4、买的总费用不超过 168000 元,且购买学习机的台数不超过购买平板电脑台数的 1.7倍请问有哪几种购买方案?哪种方案最省钱?4(2022.钦州)某体育馆方案从一家体育用品商店一次性购买如干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同)经洽谈,购买 1 个气排球和 2 个篮球共需 210 元;购买 2 个气排球和 3 个篮球共需 340 元(1)每个气排球和每个篮球的价格各是多少元?细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - -
5、- - - - - - - - - -学习必备 欢迎下载(2)该体育馆打算从这家体育用品商店一次性购买气排球和篮球共 50 个,总费用不超过 3200 元,且购买气排球的个数少于 费用最低?最低费用是多少元?30 个,应挑选哪种购买方案可使总5(2022.攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价 10 元,售价15 元;乙商品每件进价 30 元,售价 40 元(1)如该超市一次性购进两种商品共 乙两种商品各多少件?80 件,且恰好用去 1600 元,问购进甲、(2)如该超市要使两种商品共80 件的购进费用不超过1640 元,且总利润(利润=售价 进价)不少于600 元请你帮忙该超市设
6、计相应的进货方案,并指出使该超市利润最大的方案细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载6(2022.凉山州)20XX 年 5 月 6 日,凉山州政府在邛海 “空列 ”项目考察座谈会上与多方达成初步合作意向,打算共同出资60.8 亿元,建设 40 千米的邛海空中列车据测算,将有 24 千米的 “空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多 0.2 亿元
7、(1)求每千米 “空列 ”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)估计在某段 “空列”轨道的建设中,每天至少需要运输沙石 1600m 3,施工方预备租用大、小两种运输车共 10 辆,已知每辆大车每天运输沙石 200m 3,每辆小车每天运输沙石 120m 3,大、小车每天每辆租车费用分别为 1000 元、700 元,且要求每天租车的总费用不超过9300 元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?7(2022.云南模拟)某校九年级举办数学竞赛,学校预备购买甲、乙、丙三种 笔记本嘉奖给获奖同学,已知甲种笔记本单价比乙种笔记本单价高 10 元,丙种 笔记本单价是甲种
8、笔记本单价的一半,单价和为 80 元(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校方案拿出不超过950 元的资金购买三种笔记本40 本,要求购买丙种笔记本 20 本,甲种笔记本超过5 本,有哪几种购买方案?细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载8(2022.深圳二模)为了能以 “更新、更绿、更洁、更宁 ”的城市形象迎接 20XX 年大运会的召开, 深圳市全面实施市容市貌环
9、境提升行动某工程队承担了一段 长为 1500 米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化 1 米的道路需要 A 型花 2 枝和 B 型花 3 枝,成本是 22 元;乙方案是绿化 1 米的道路需要 A 型花 1 枝和 B 型花 5 枝,成本是 25 元现要求依据乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的 2 倍(1)求 A 型花和 B 型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总 成本最少是多少元?9(2022.安徽模拟) 嘉年华小区预备新建50 个停车位 以解决小区停车难的问题已知新建 1 个地上停车位和 1 个地下
10、停车位需 0.7 万元;新建 3 个地上停车位和 2 个地下停车位需 1.6 万元(1)该小区新建 1 个地上停车位和 1 个地下停车位各需多少万元?细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载(2)如该小区估计投资金额超过 案15 万元而不超过 16 万元,请供应两种建造方10(2022.云南模拟)某校九年级举办数学竞赛,学校预备购买甲、乙、丙三种 笔记本嘉奖给获奖同学,已知甲种笔记本
11、单价比乙种笔记本单价高 10 元,丙种 笔记本单价是甲种笔记本单价的一半,单价和为 80 元(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校方案拿出不超过950 元的资金购买三种笔记本40 本,要求购买丙种笔记本 20 本,甲种笔记本超过5 本,有哪几种购买方案?11(2022春.宁国市期中)学校将如干间宿舍安排给七年级一班的女生住宿,已知该班女生少于35 人,如每个房间住5 人,就剩下 5 人没处住;如每个房间住 8 人,就空一间房,并且仍有一间房也不满 最多有多少间宿舍, 多少名女生?细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 6 页
12、,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载12(2022 春.房山区期中)某班有住宿生如干人,分住如干间宿舍,如每间住 4人,就仍余 20 人无宿舍住;如每间住 住宿生人数和宿舍间数8 人,就有一间宿舍不空也不满,求该班13(2022 春.重庆校级月考)某班级从文化用品市场购买了签字笔和圆珠笔共15 支,所付金额大于26 元,但小于 27 元已知签字笔每支2 元,圆珠笔每支1.5 元,求一共购买了多少支签字笔?14(2022 春.舒城县校级月考)为了参与20XX 年西安世界园艺博览
13、会,某公司用几辆载重为 8 吨的汽车运输一批参展货物如每辆汽车只装4 吨,就剩下 第 7 页,共 25 页 细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载20 吨货物;如每辆汽车装满 少辆汽车运货?8 吨,就最终一辆汽车不空也不满请问:共有多15(2022.黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情 ”某单位给某乡中学校捐献一批饮用水和蔬菜共 蔬菜多 80 件(1)求饮用水和蔬菜各有多少件?
14、320 件,其中饮用水比(2)现方案租用甲、乙两种货车共 8 辆,一次性将这批饮用水和蔬菜全部运往该乡中学校 已知每辆甲种货车最多可装饮用水40 件和蔬菜 10 件,每辆乙种货车最多可装饮用水和蔬菜各 20 件就运输部门支配甲、乙两种货车时有几种方案?请你帮忙设计出来;(3)在(2)的条件下,假如甲种货车每辆需付运费400 元,乙种货车每辆需付运费 360 元运输部门应挑选哪种方案可使运费最少?最少运费是多少元?细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 8 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - -
15、 - - - - - - - - - - - - -学习必备 欢迎下载16(2022.凉山州) 20XX 年 5 月 6 日,凉山州政府在邛海 “空列”项目考察座谈会上与多方达成初步合作意向,打算共同出资60.8 亿元,建设 40 千米的邛海空中列车据测算,将有 24 千米的 “空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多 0.2 亿元(1)求每千米 “空列 ”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)估计在某段 “空列”轨道的建设中,每天至少需要运输沙石 1600m 3,施工方预备租用大、小两种运输车共 10 辆,已知每辆大车每天运输沙石 200m
16、 3,每辆小车每天运输沙石 120m 3,大、小车每天每辆租车费用分别为 1000 元、700 元,且要求每天租车的总费用不超过9300 元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?17(2022.淄博模拟)某商店需要购进甲、乙两种商品共如下表:甲 乙进价(元 /件)15 35 售价(元 /件)20 45 160 件,其进价和售价(1)如商店方案销售完这批商品后能获利 1100 元,问甲、乙两种商品应分别购进多少件?(2)如商店方案投入资金少于4300 元,且销售完这批商品后获利多于1260 元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案细心整理归纳 精选学习
17、资料 - - - - - - - - - - - - - - - 第 9 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -细心整理归纳 精选学习资料 学习必备欢迎下载 第 10 页,共 25 页 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载参考答案:1解:(1)设饮用水有x 件,就蔬菜有(x 80)件x+( x 80)=320,解这个方程,得 x=2
18、00x 80=120答:饮用水和蔬菜分别为 200 件和 120 件;(2)设租用甲种货车 m 辆,就租用乙种货车(8 m)辆得:,解这个不等式组,得 2m4m 为正整数,m=2 或 3 或 4,支配甲、乙两种货车时有 3 种方案设计方案分别为: 甲车 2 辆,乙车 6 辆; 甲车 3 辆,乙车 5 辆; 甲车 4 辆,乙车 4 辆;(3)3 种方案的运费分别为:细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 11 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - -
19、 -学习必备 欢迎下载 2400+6360=2960 (元); 3400+5360=3000 (元); 4400+4360=3040 (元);方案 运费最少,最少运费是 2960 元答:运输部门应挑选甲车 2 辆,乙车 6 辆,可使运费最少,最少运费是 2960 元【点评】 解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的关系式2【分析】(1)设每本文学名著x 元,动漫书y 元,依据题意列出方程组解答即可;(2)依据学校要求购买动漫书比文学名著多 20 本,动漫书和文学名著总数不低于 72 本,总费用不超过 2000 元,列出不等式组,解答即可【解答】 解:(1)设每本文学名著 x
20、 元,动漫书 y 元,可得:,解得:,答:每本文学名著和动漫书各为40 元和 18 元;x+20)本,依据题意可得:(2)设学校要求购买文学名著x 本,动漫书为(,解得:,由于取整数,所以 x 取 26,27,28;方案一:文学名著26 本,动漫书46 本; 第 12 页,共 25 页 方案二:文学名著27 本,动漫书47 本;方案三:文学名著28 本,动漫书48 本细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -3【分析】(1)设购
21、买 1 台平板电脑和学习必备欢迎下载x 元, y 元,依据题意列出方程组,1 台学习机各需求出方程组的解得到x 与 y 的值,即可得到结果;168000 元,(2)设购买平板电脑x 台,学习机( 100 x)台,依据 “购买的总费用不超过且购买学习机的台数不超过购买平板电脑台数的1.7 倍 ”列出不等式组,求出不等式组的解集,即可得出购买方案,进而得出最省钱的方案【解答】 解:(1)设购买 1 台平板电脑和1 台学习机各需x 元, y 元,依据题意得:,解得:,就购买 1 台平板电脑和 1 台学习机各需 3000 元, 800 元;(2)设购买平板电脑 x 台,学习机( 100 x)台,依据题
22、意得:,解得: 37.03x40,正整数 x 的值为 38,39,40,当 x=38 时, y=62;x=39 时, y=61;x=40 时, y=60,方案 1:购买平板电脑38 台,学习机62 台,费用为114000+49600=163600 (元);方案 2:购买平板电脑39 台,学习机61 台,费用为117000+48800=165800 (元);方案 3:购买平板电脑40 台,学习机60 台,费用为120000+48000=168000 (元),就方案 1 最省钱细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 13 页,共 25 页 - -
23、 - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -4【分析】(1)设每个气排球的价格是学习必备欢迎下载y 元,依据购买1 个气排x 元,每个篮球的价格是球和 2 个篮球共需 210 元;购买 2 个气排球和 3 个篮球共需 340 元列方程组求解即可;(2)设购买气排球 x 个,就购买篮球(50 x)个,依据总费用不超过 3200 元,且购买气排球的个数少于 30 个确定出 x 的范畴,从而可运算出最低费用【解答】 解:(1)设每个气排球的价格是 x 元,每个篮球的价格是 y 元依据题意得:解得:所以每个气排球的价格是 50 元
24、,每个篮球的价格是 80 元(2)设购买气排球 x 个,就购买篮球(50 x)个依据题意得: 50x+80 (50 x)3200 解得 x26,又排球的个数小于 30 个,排球的个数可以为 27,28,29,排球比较廉价,就购买排球越多,总费用越低,当购买排球 29 个,篮球 21 个时,费用最低2950+2180=1450+1680=3130 元5【分析】( 1)设该超市购进甲商品x 件,就购进乙商品(80 x)件,依据恰好用去1600元,求出 x 的值,即可得到结果;(2)设该超市购进甲商品 x 件,乙商品( 80 x)件,依据两种商品共 80 件的购进费用不超过 1640 元,且总利润(
25、利润 =售价 进价)不少于 600 元列出不等式组,求出不等式组的解集确定出 x 的值,即可设计相应的进货方案,并找出访该超市利润最大的方案【解答】 解:(1)设该超市购进甲商品 x 件,就购进乙商品(80 x)件,依据题意得: 10x+30 (80 x)=1600,细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 14 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载解得: x=40,80 x=40,就购进甲、乙两种商品各 40 件;(2)设
26、该超市购进甲商品x 件,乙商品( 80 x)件,由题意得:,解得: 38x40,x 为非负整数,x=38 ,39,40,相应地 y=42,41,40,进而利润分别为 538+1042=190+420=610 ,539+1041=195+410=605 ,540+1040=200+400=600 ,就该超市利润最大的方案是购进甲商品38 件,乙商品42 件x 亿元,每千米陆6【分析】( 1)第一依据题意,设每千米“空列 ”轨道的水上建设费用需要地建设费用需 y 亿元,然后依据“ 空列 ” 项目总共需要 60.8 亿元,以及每千米水上建设费用比陆地建设费用多 0.2 亿元,列出二元一次方程组,再解
27、方程组,求出每千米“空列 ”轨道的水上建设费用和陆地建设费用各需多少亿元即可(2)第一依据题意,设每天租 m 辆大车,就需要租 10 m 辆小车,然后依据每天至少需要运输沙石 1600m3,以及每天租车的总费用不超过 9300 元,列出一元一次不等式组,判定出施工方有几种租车方案;最终分别求出每种租车方案的费用是多少,判定出哪种租车方案费用最低,最低费用是多少即可【解答】 解:( 1)设每千米 “空列 ”轨道的水上建设费用需要 y 亿元,就,解得x 亿元,每千米陆地建设费用需所以每千米 “ 空列 ”轨道的水上建设费用需要1.6 亿元,每千米陆地建设费用需1.4 亿元 第 15 页,共 25 页
28、 细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备欢迎下载1.4 亿元答:每千米 “ 空列 ”轨道的水上建设费用需要1.6 亿元,每千米陆地建设费用需(2)设每天租m 辆大车,就需要租10 m 辆小车,就,施工方有 3 种租车方案: 租 5 辆大车和 5 辆小车; 租 6 辆大车和 4 辆小车; 租 7 辆大车和 3 辆小车; 租 5 辆大车和 5 辆小车时,租车费用为:10005+7005 =5000+3500 =8500(
29、元) 租 6 辆大车和 4 辆小车时,租车费用为:10006+7004 =6000+2800 =8800(元) 租 7 辆大车和 3 辆小车时,租车费用为:10007+7003 =7000+2100 细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 16 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载=9100(元)850088009100,租 5 辆大车和 5 辆小车时,租车费用最低,最低费用是 8500 元7【分析】( 1)设甲种笔记本的
30、单价为 x 元,乙种为( x 10)元,丙种为 元,依据 “单价和为 80 元” 列出方程并解答;(2)设购买甲种笔记本 y 本,依据 “不超过 950 元的资金购买三种笔记本 40 本,要求购买丙种笔记本 20 本,甲种笔记本超过 5 本” 列出不等式组并解答【解答】 解:(1)设甲种笔记本的单价为 x 元,乙种为( x 10)元,丙种为 元,依据题意得x+( x 10)+ =80,解得 x=36,乙种单价为x 10=36 10=26 元,26 元,丙种为18 元丙种为=18 元答:甲种笔记本的单价为36 元,乙种为(2)设购买甲种笔记本y 本,由题意得,解得 5 y7,由于 y 是整数,所
31、以 y=6 或 y=7 就乙种笔记本购买14 本或 13 本,20 本; 第 17 页,共 25 页 所以,方案有2 种:方案一:购买甲种笔记本6 本,乙种笔记本14 本,丙种笔记本细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -方案二:购买甲种笔记本学习必备欢迎下载20 本7 本,乙种笔记本13 本,丙种笔记本8【分析】(1)此题需依据题意设A 型花和 B 型花每枝的成本分别是x 元和 y 元,依据题意列出方程组,即可求出 A 型花
32、和 B 型花每枝的成本(2)此题需先依据题意设按甲方案绿化的道路总长度为 结果;再求出工程的总成本即可得出答案【解答】 解:(1)设 A 型花和 B 型花每枝的成本分别是解得:所以 A 型花和 B 型花每枝的成本分别是 5 元和 4 元a米,依据题意列出不等式,解出x 元和 y 元,依据题意得:(2)设按甲方案绿化的道路总长度为 a 米,依据题意得:1500 a2a a500 就所需工程的总成本是52a+43a+5(1500 a)+45(1500 a)=10a+12a+7500 5a+30000 20a =37500 3a 当按甲方案绿化的道路总长度为 w=37500 3500 =36000(
33、元)500 米时,所需工程的总成本最少当按甲方案绿化的道路总长度为500 米时,所需工程的总成本最少,总成本最少是36000元细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 18 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载9【分析】(1)设新建一个地上停车位需 x 万元,新建一个地下停车位需 y 万元,依据新建 1 个地上停车位和1 个地下停车位需0.7 万元;新建 3 个地上停车位和2 个地下停车位需1.6 万元,可列出方程组求解(2
34、)设新建 m 个地上停车位,依据小区估计投资金额超过15 万元而不超过16 万元,可列出不等式求解【解答】 解:(1)设新建一个地上停车位需 x 万元,新建一个地下停车位需 y 万元,就依题意得:,解得答:新建一个地上停车位需 0.2 万元,新建一个地下停车位需 0.5 万元;(2)设建 a 个地上车位, (50 a)个地下车位就 150.2a+0.5(50 a)16,解得 30a33就 a=30,50 a=20; a=31,50 a=19; a=32,50 a=18; a=33,50 a=17;因此有 4 种方案10【分析】(1)设甲种笔记本的单价为x 元,乙种为( x 10)元,丙种为元,
35、依据 “单价和为 80 元 ”列出方程并解答;(2)设购买甲种笔记本y 本,依据 “不超过 950 元的资金购买三种笔记本40 本,要求购买 第 19 页,共 25 页 丙种笔记本20 本,甲种笔记本超过5 本” 列出不等式组并解答细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载【解答】 解:(1)设甲种笔记本的单价为 x 元,乙种为( x 10)元,丙种为 元,依据题意得x+( x 10)+ =80,解得 x=36
36、,乙种单价为x 10=36 10=26 元,26 元,丙种为18 元丙种为=18 元答:甲种笔记本的单价为36 元,乙种为(2)设购买甲种笔记本y 本,由题意得,解得 5 y7,由于 y 是整数,所以 y=6 或 y=7 就乙种笔记本购买 14 本或 13 本,所以,方案有 2 种:方案一:购买甲种笔记本 6 本,乙种笔记本 14 本,丙种笔记本 20 本;方案二:购买甲种笔记本 7 本,乙种笔记本 13 本,丙种笔记本 20 本11【分析】 设有 x 间宿舍,依题意列出不等式组,解不等式组,取最大整数即可【解答】 解:设有 x 间宿舍,依题意得,解得:x6,细心整理归纳 精选学习资料 - -
37、 - - - - - - - - - - - - - 第 20 页,共 25 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载由于宿舍数应当为整数,所以,最多有 x=5 间宿舍,当 x=5 时,同学人数为:5x+5=5 5+5=30 人答:最多有 5 间房, 30 名女生12【分析】 依据题意设支配住宿的房间为 x 间,并用含 x 的代数式表示同学人数,依据 “ 每间住 4 人,就仍余 20 人无宿舍住和; 每间住 8 人,就有一间宿舍不空也不满”列不等式组解答【解答】 解:设支配住宿的房间为x 间
38、,就同学有(4x+20)人,依据题意,得解之得 5.25x6.25 又 x 只能取正整数,x=6 当 x=6 ,4x+20=44 (人)答:住宿生有44 人,支配住宿的房间6 间15 x)支,依据 “ 所付金额大于2613【分析】 设签字笔购买了x 支,就圆珠笔购买了(元,但小于 27 元”列出关于 x 的不等式组求其整数解即可求解【解答】 解:设签字笔购买了 x 支,就圆珠笔购买了(15 x)支,依据题意得,解不等式组得 7 x9,x 是整数,x=8 细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 21 页,共 25 页 - - - - - - -
39、 - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -答:一共购买了8 支签字笔学习必备欢迎下载14【分析】 设有 x 辆汽车, 依据每辆汽车装满8 吨时( x 1)辆车装载总量小于实际总量,x 辆车装载总量大于实际总量,列不等式组,解不等式组可得【解答】 解:设有x 辆汽车,就有(4x+20)吨货物由题意,可知当每辆汽车装满8 吨时,就有( x 1)辆是装满的,所以有方程,解得 5 x7由实际意义知 x 为整数所以 x=6 答:共有 6 辆汽车运货15【分析】(1)关系式为:饮用水件数 +蔬菜件数 =320;(2)关系式为: 40甲货车辆数 +20乙货车辆数 200;10甲货车辆数 +20乙货车辆数 120;(3)分别运算出相应方案,比较即可【解答】 解:(1)设饮用水有x 件,就蔬菜有(x 80)件x+( x 80)=320,解这个方程,得 x=200x 80=120答:饮用水和蔬菜分别为 200 件和 120 件;(2)设租用甲种货车 m 辆,就租用乙种货车(8 m)辆得:细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 22 页,共 25 页 - - - - - - - - -