《中考课件初中数学总复习资料》专题25 圆的问题(原创版).docx

上传人:秦** 文档编号:4969843 上传时间:2021-11-30 格式:DOCX 页数:12 大小:196.85KB
返回 下载 相关 举报
《中考课件初中数学总复习资料》专题25 圆的问题(原创版).docx_第1页
第1页 / 共12页
《中考课件初中数学总复习资料》专题25 圆的问题(原创版).docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《《中考课件初中数学总复习资料》专题25 圆的问题(原创版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题25 圆的问题(原创版).docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、专题25 圆的问题 专题知识回顾 一、与圆有关的概念与规律1圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。圆的半径或直径决定圆的大小,圆心决定圆的位置。 2.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。4推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧5圆心角:顶点在圆心上的角叫做圆心角。圆心角的度数等于它所对弧的度数。6在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心

2、角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 7.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。8.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径10. 点和圆的位置关系: 点在圆内点到圆心的距离小于半径 点在圆上点到圆心的距离等于半径 点在圆外点到圆心的距离大于半径11. 过三点的圆:不在同一直线上的三个点确定一个圆。12. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形

3、的外接圆。外接圆的圆心,叫做三角形的外心。外心是三角形三条边垂直平分线的交点。外心到三角形三个顶点的距离相等。13若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。14圆内接四边形的特征: 圆内接四边形的对角互补;圆内接四边形任意一个外角等于它的内对角。15.直线与圆有3种位置关系:如果O的半径为r,圆心O到直线的距离为d,那么 直线和O相交; 直线和O相切; 直线和O相离。16.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。内心是三角形三个角的角平分线的交点。内心到三角形三边的距离相等。17.切线的性质(1)经过切点垂直于这条半径的直

4、线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。18.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。19.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,并且圆心和这一点的连线平分两条切线的夹角。 20设圆的半径为,圆的半径为,两个圆的圆心距,则: 两圆外离 ; 两圆外切 ; 两圆相交 ; 两圆内切 ; 两圆内含 21.圆中几个关键元素之间的相互转化弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.22.与圆有关的公式设圆的周长为r,则:(1)求圆的直径公式d=2r(2)求圆的周长公式 C=

5、2r (3)求圆的面积公式S=r2二、解题要领1.判定切线的方法:(1)若切点明确,则“连半径,证垂直”。常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:直线所垂直的是圆的半径(过圆上一点);直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.2.与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形

6、式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:构建矩形转化线段;构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);构造垂径定理模型:弦长一半、弦心距、半径;构造勾股定理模型;构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题

7、,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。专题典型题考法及解析 【例题1】(2019山东省滨州市)如图,AB为O的直径,C,D为O上两点,若BCD40°,则ABD的大小为()A60°B50°C40°D20°【例题2】(2019南京)如图,PA.PB是O的切线,A.B为切点,点C.D在O上若P102°,则A+C 【例题3】(2019甘肃武威)如图,在ABC中,ABAC,BAC120°,点D在BC边上,D经过点A和点B且与BC边相交于点E(1)求证:AC是D的切线;(2)若CE2,求D的

8、半径【例题4】(2019江苏苏州)如图,AE为的直径,D是弧BC的中点BC与AD,OD分别交于点E,F.(1)求证:;(2)求证:;(3)若,求的值. 专题典型训练题 一、选择题1(2019甘肃陇南)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则ASB的度数是()A22.5°B30°C45°D60°2.(2019山东省聊城市)如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE如果A70°,那么DOE的度数为()A35°B38°C40°D42°3.(2019广

9、西贵港)如图,AD是O的直径,若AOB40°,则圆周角BPC的度数是()A40°B50°C60°D70°4.(2019湖北天门)如图,AB为O的直径,BC为O的切线,弦ADOC,直线CD交BA的延长线于点E,连接BD下列结论:CD是O的切线;CODB;EDAEBD;EDBCBOBE其中正确结论的个数有()A4个B3个C2个D1个5.(2019山东省德州市 )如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若ABC40°,则ADC的度数是()A130°B140°C150°D160°6.(

10、2019湖南益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()APAPBBBPDAPDCABPDDAB平分PD7.(2019广东广州)平面内,O的半径为1,点P到O的距离为2,过点P可作O的切线条数为()A0条B1条C2条D无数条8(2019山东泰安)如图,ABC是O的内接三角形,A119°,过点C的圆的切线交BO于点P,则P的度数为()A32°B31°C29°D61°9(2019湖南益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆

11、O于点D,下列结论不一定成立的是()APAPBBBPDAPDCABPDDAB平分PD10. (2019湖北荆门)如图,ABC内心为I,连接AI并延长交ABC的外接圆于D,则线段DI与DB的关系是()ADIDBBDIDBCDIDBD不确定二、填空题11.(2019广西北部湾)九章算术作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的几何原本并称现代数学的两大源泉.在九章算术中记载有一问题:“今有圆材埋在壁中,不知大小。以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为 寸.12. (

12、2019黑龙江绥化)半径为5的¤O是锐角三角形ABC的外接圆,ABAC,连接OB,OC,延长CO交弦AB于点D.若OBD是直角三角形,则弦BC的长为_.13. (2019山东东营)如图,AC是O的弦,AC=5,点B是O 上的一个动点,且ABC=45°,若点M、N分别是 AC、BC的中点,则 MN的最大值是_14.(2019黑龙江省龙东地区)如图,在O中,半径OA垂直于弦BC,点D在圆上,且ADC30°,则AOB的度数为_15.(2019江苏常州)如图,AB是O的直径,C、D是O上的两点,AOC120°,则CDB °16.(2019四川省雅安市)

13、如图,ABC内接于O,BD是O的直径,CBD=21°,则 A的度数为_. 17.(2019安徽)如图,ABC内接于O,CAB30°,CBA45°,CDAB于点D,若O的半径为2,则CD的长为 18.(2019江苏泰州)如图,O的半径为5,点P在O上,点A在O内,且AP3,过点A作AP的垂线交O于点B.C设PBx,PCy,则y与x的函数表达式为 19.(2019山东省济宁市 )如图,O 为Rt ABC 直角边 AC 上一点,以 OC 为半径的O 与斜边 AB 相切于点 D,交 OA 于点 E,已知 BC,AC3则图中阴影部分的面积是 20.(2019湖北省鄂州市)如

14、图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切点A、B在x轴上,且OAOB点P为C上的动点,APB90°,则AB长度的最大值为 三、解答题21.(2019南京)如图,O的弦AB.CD的延长线相交于点P,且ABCD求证:PAPC22.(2019湖南株洲)四边形ABCD是O的圆内接四边形,线段AB是O的直径,连结AC.BD点H是线段BD上的一点,连结AH、CH,且ACHCBD,ADCH,BA的延长线与CD的延长线相交与点P(1)求证:四边形ADCH是平行四边形;(2)若ACBC,PBPD,AB+CD2(+1)求证:DHC为等腰直角三角形;求CH的长度23.(2019广西池河)如图,五边形ABCDE内接于O,CF与O相切于点C,交AB延长线于点F(1)若AEDC,EBCD,求证:DEBC;(2)若OB2,ABBDDA,F45°,求CF的长24.(2019甘肃)如图,在RtABC中,C90°,以BC为直径的O交AB于点D,切线DE交AC于点E(1)求证:AADE;(2)若AD8,DE5,求BC的长25.(2019湖北省咸宁市)如图,在RtABC中,ACB90°,D为AB的中点,以CD为直径的O分别交AC,BC于点E,F两点,过点F作FGAB于点G(1)试判断FG与O的位置关系,并说明理由(2)若AC3,CD2.5,求FG的长

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁