《阻抗测量幻灯片.ppt》由会员分享,可在线阅读,更多相关《阻抗测量幻灯片.ppt(157页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、阻抗测量第1页,共157页,编辑于2022年,星期三8.1概述概述8.1.1阻抗的定义及其表示方法阻抗的定义及其表示方法阻抗是描述网络和系统的一个重要参量。(8.1-1)和分别为端口电压和电流相量。对于无源单口网络,阻抗定义为图8.1-1无源单口网络第2页,共157页,编辑于2022年,星期三 在集中参数系统中,表明能量损耗的参量是电阻元件R,而表明系统储存能量及其变化的参量是电感元件L和电容元件C。严格地分析这些元件内的电磁现象是非常复杂的,因而在一般情况下,往往把它们当作不变的常量来进行测量。第3页,共157页,编辑于2022年,星期三在阻抗测量中,测量环境的变化、信号电压的大小及其工作频
2、率的变化等都将直接影响测量的结果。例如,不同的温度和湿度将使阻抗表现为不同的值,过大的信号可能使阻抗元件表现为非线性,特别是在不同的工作频率下,阻抗表现出的性质会截然相反。在阻抗测量中,必须按实际工作条件(尤其是工作频率)进行。第4页,共157页,编辑于2022年,星期三一般情况下,阻抗为复数,它可用直角坐标和极坐标表示,即(8.1-2)R和X分别为阻抗的电阻分量和电抗分量,|Z|和z分别称为阻抗模和阻抗角。第5页,共157页,编辑于2022年,星期三阻抗两种坐标形式的转换关系为:(8.1-2)和R=|Z|coszX=|Z|sinz(8.1-4)第6页,共157页,编辑于2022年,星期三导纳
3、Y是阻抗Z的倒数,即(8.1-5)其中:(8.1-6)分别为导纳Y的电导分量和电纳分量。导纳的极坐标形式为Y=G+jB=|Y|ejj (8.1-7)式中,|Y|和j分别称为导纳模和导纳角。第7页,共157页,编辑于2022年,星期三8.1.2电阻器、电阻器、电感器和电容器的电路模型电感器和电容器的电路模型一个实际的元件,如电阻器、电容器和电感器,都不可能是理想的,存在着寄生电容、寄生电感和损耗。也就是说,一个实际的R、L、C元件都含有三个参量:电阻、电感和电容。表8.1-1分别画出了电阻器、电感器和电容器在考虑各种因素时的等效模型和等效阻抗。其中,R0、R0、L0和C0均表示等效分布参量。第8
4、页,共157页,编辑于2022年,星期三第9页,共157页,编辑于2022年,星期三第10页,共157页,编辑于2022年,星期三 一个实际的电阻器在高频情况下既要考虑其引线电感,同时又必须考虑其分布电容,故其模型如表8.1-1中的1-3所示。第11页,共157页,编辑于2022年,星期三(8.1-8)其等效阻抗为:Re、Xe分别为等效阻抗的电阻分量和电抗分量。第12页,共157页,编辑于2022年,星期三 在频率不太高时,即L0/R1,C0R0时,电阻器呈电感性;当0时,电阻器呈电容性。也就是说,当工作频率很低时,电阻器的电阻分量起主要作用,其电抗分量小到可以忽略不计,此时Ze=R。随着工作
5、频率的提高,就必须考虑电抗分量。第14页,共157页,编辑于2022年,星期三 精确测量表明,电阻器的等效电阻本身也是频率的函数,工作于交流情况下的电阻器由于集肤效应、涡流效应、绝缘损耗等使等效电阻随频率而变化。设R-和R分别为电阻器的直流和交流阻值,实验表明,可用如下经验公式足够准确地表示它们之间的关系:第15页,共157页,编辑于2022年,星期三(8.1-11)对于一般的电阻器来说,、等系数都很小。对于某一电阻器而言,这些系数都是常数,故可以在几个不同的频率上分别测出其阻值R,从而推导出这些系数和R-。第16页,共157页,编辑于2022年,星期三通常用品质因数Q来衡量电感器、电容器以及
6、谐振电路的质量,其定义为对电感器而言,若只考虑导线的损耗,则电感器的模型如表8.1-1中的2-2所示第17页,共157页,编辑于2022年,星期三其品质因数为(8.1-12)I和T分别为正弦电流的有效值和周期。在频率较高的情况下,需要考虑分布电容,电感器的模型如表8.1-1中的2-3所示,其等效阻抗为(8.1-13)第18页,共157页,编辑于2022年,星期三(8.1-13)若电感器的Q值很高,则其损耗电阻R0很小,分母中的虚部可忽略,则电感器的等效电感为(8.1-14)表明电感器的等效电感不仅与频率有关,而且与C0有关。C0越大,频率越高,则Le与L相差越大。在实际测量中,在某一频率f下,
7、测得的是等效电感Le。第19页,共157页,编辑于2022年,星期三对电容器而言,若仅考虑介质损耗及泄漏等因素,则其等效模型如表8.1-1中的3-2 所示。(8.1-15)其等效导纳为Ye=G0+jC,品质因数为U和T分别为电容器两端正弦电压的有效值和周期第20页,共157页,编辑于2022年,星期三 对电容器而言,常用损耗角和损耗因数D来衡量其质量。把导纳Y画在复平面上。图中画出了损耗角,其正切为(8.1-16)图8.1-2 电容器的损耗角损耗因数定义为(8.1-17)第21页,共157页,编辑于2022年,星期三当损耗较小,即较小时,有(8.1-18)第22页,共157页,编辑于2022年
8、,星期三当频率很高时,电容器的模型如表8.1-1中的3-3所示。L0为引线电感;R为引线和接头引入的损耗;R0为介质损耗及泄漏。此时,寄生电感的影响相当显著,若忽略其损耗,则其等效导纳为第23页,共157页,编辑于2022年,星期三(8.1-19)故其等效电容为(8.1-20)可见 L0越大,频率越高,则Ce与C相差就越大。第24页,共157页,编辑于2022年,星期三结论:只是在某些特定条件下,电阻器、电感器和电容器才能看成理想元件。一般情况下,它们都随所加的电流、电压、频率、温度等因素而变化。在测量阻抗时,必须使得测量条件尽可能与实际工作条件接近,否则,测得的结果将会有很大的误差,甚至是错
9、误的结果。测量阻抗参数最常用的方法有伏安法、电桥法和谐振法。第25页,共157页,编辑于2022年,星期三伏安法:利用电压表和电流表分别测出元件的电压和电流值,从而计算出元件值。伏安法一般只能用于频率较低的情况,把电阻器、电感器和电容器看成理想元件。用伏安法测量阻抗的线路有两种连接方式,这两种测量方法都存在着误差。图8.1-3伏安法测量阻抗第26页,共157页,编辑于2022年,星期三在图(a)所示的测量中,测得的电流包含了流过电压表的电流,它一般用于测量阻抗值较小的元件;在图(b)所示的测量中,测得的电压包含了电流表上的压降,它一般用于测量阻抗值较大的元件。第27页,共157页,编辑于202
10、2年,星期三(8.1-21)若被测元件为电感器,则由于L=U/I,有(8.1-22)若被测元件为电容器,则由于1/C=U/I,有(8.1-23)在低频情况下,若被测元件为电阻器,则其阻值为:第28页,共157页,编辑于2022年,星期三8.2电桥法测量阻抗电桥法测量阻抗电桥的基本形式由4个桥臂、1个激励源和1个零电位指示器组成。Z1、Z2、Z3和Z4为四个桥臂阻抗,Zs和Zg分别为激励源和指示器的内阻抗。图8.2-1四臂电桥的原理图第29页,共157页,编辑于2022年,星期三 最简单的零电位指示器可以是一副耳机。频率较高时,常用交流放大器或示波器作为零电位指示器。第30页,共157页,编辑于
11、2022年,星期三8.2.1电桥平衡条件电桥平衡条件当指示器两端电压相量BD=0时,流过指示器的电流相量=0,这时称电桥达到平衡。第31页,共157页,编辑于2022年,星期三电桥达到平衡时:而且可得电桥平衡条件:电桥平衡条件表明:一对相对桥臂阻抗的乘积必须等于另一对相对桥臂阻抗的乘积。(8.2-1)第32页,共157页,编辑于2022年,星期三若电桥平衡条件中的阻抗用指数型表示,则得|Z1|ej1|Z3|ej3=|Z2|ej2|Z4|ej4根据复数相等的定义,上式必须同时满足:|Z1|Z3|=|Z2|Z4|(8.2-2)1+3=2+4 (8.2-3)结论:电桥平衡必须同时满足两个条件:相对臂
12、的阻抗模乘积必须相等(模平衡条件),相对臂的阻抗角之和必须相等(相位平衡条件)。第33页,共157页,编辑于2022年,星期三 根据模平衡条件和相位平衡条件,因此在交流情况下,必须调节两个或两个以上的元件才能将电桥调节到平衡,同时电桥四个臂的元件性质要适当选择才能满足平衡条件。第34页,共157页,编辑于2022年,星期三在实用电桥中,为了调节方便,常有两个桥臂采用纯电阻。由 可知,若相邻两臂(如Z1和Z4)为纯电阻,则另外两臂的阻抗性质必须相同(即同为容性或感性);若相对两臂(如Z2和Z4)采用纯电阻,则另外两臂必须一个是电感性阻抗,另一个是电容性阻抗。若是直流电桥,则由于各桥臂均由纯电阻构
13、成,因此不需要考虑相位问题。第35页,共157页,编辑于2022年,星期三8.2.2交流电桥的收敛性交流电桥的收敛性为使交流电桥满足平衡条件,至少要有两个可调元件。一般情况下,任意一个元件参数的变化会同时影响模平衡条件和相位平衡条件,因此,要使电桥趋于平衡,需要反复进行调节。交流电桥的收敛性就是指电桥能以较快的速度达到平衡的能力。第36页,共157页,编辑于2022年,星期三设Z4为被测的电感元件。图8.2-2交流电桥电路令 N=Z2Z4Z1Z3当N=0时,电桥达到平衡。N越小,表示电桥越接近平衡条件,指示器的读数就越小。因此,只要知道了N随被调元件参数的变化规律,也就知道了指示器读数的变化规
14、律。第37页,共157页,编辑于2022年,星期三 N=R2(R4+jX4)R3(R1+jX1)=AB(8.2-5)其中:A=R2(R4+jX4)B=R3(R1+jX1)(8.2-6)第38页,共157页,编辑于2022年,星期三A=R2(R4+jX4)B=R3(R1+jX1)由于A和B均为复数,画在复平面上如图(a)所示。若选择R1和L1为调节元件,则画在复平面上如图(b)所示。图8.2-3第39页,共157页,编辑于2022年,星期三当调节X1时,复数B的实部保持不变,复数B将沿直线ab移动。当移动到B1点时,由B1到A的距离最短,复数N最小,指示器的读数为最小。图8.2-3第40页,共1
15、57页,编辑于2022年,星期三然后调节R1,这时复数B1的虚部不变,复数B1将沿直线cd移动。当B1移动到A点时,复数N为零,电桥达到平衡。只需先调节X1再调节R1两个步骤就能将电桥调节到平衡,电桥的收敛性好。图8.2-3第41页,共157页,编辑于2022年,星期三如果选择R1和R2为调节元件,则画在复平面上如图(c)所示。第42页,共157页,编辑于2022年,星期三当调节R2时,由A=R2(R4+jX4)B=R3(R1+jX1)可知,复数A的幅角不变,而它的模将发生变化,复数A将沿直线OM移动。当调节R1时,复数B的虚部不变,它将沿直线BM移动。第43页,共157页,编辑于2022年,
16、星期三需要反复调节R2和R1,使复数A和B分别沿着直线OM和BM移动到M点,这时N=0,电桥达到平衡。由此可见,选择R1和R2作为调节元件时,收敛性较差。第44页,共157页,编辑于2022年,星期三正确地选择可调元件对收敛性是十分重要的。但在实际中,如何选择可调元件应全面考虑,不只考虑收敛性。例如上述图(c)调节R1和R2时,虽然收敛性较差,但由于制造可调的精密电阻比制造可调的精密电感要容易,而且体积小、价格低廉,因此仍常常被采用。第45页,共157页,编辑于2022年,星期三8.2.3电桥电路电桥电路第46页,共157页,编辑于2022年,星期三第47页,共157页,编辑于2022年,星期
17、三第48页,共157页,编辑于2022年,星期三第49页,共157页,编辑于2022年,星期三直流电桥用于精确地测量电阻的阻值。当电桥平衡时,有Rx=R4=KR4(8.2-7)K=R2R3。一、直流电桥第50页,共157页,编辑于2022年,星期三通常,R2与R3的比值做成一个比率臂;K称为比率臂的倍率;R4为标准电阻,称为标称臂。只要适当地选择倍率K和R4的阻值,就可以精确地测得Rx的阻值。第51页,共157页,编辑于2022年,星期三二、比较电桥通过与已知电容或电感比较来测定未知电容或电感,称为比较电桥,其特点是相邻两臂采用纯电阻。表8.2-1中的(2)和(3)为电容比较电桥,(6)为电感
18、比较电桥。第52页,共157页,编辑于2022年,星期三串联电容比较电桥根据电桥平衡条件,得设图8.2-4串联电容比较电桥(8.2-8)第53页,共157页,编辑于2022年,星期三(8.2-8)复数方程两边必须同时满足实部相等和虚部相等,即:(8.2-9)第54页,共157页,编辑于2022年,星期三由式(8.2-9)解得(8.2-10)当选择R4和C4为可调元件时,被测量的参数Rx和Cx的值可以分别由读数得到。第55页,共157页,编辑于2022年,星期三三、麦克斯威-文氏电桥Z1=Rx+jLx,Z2=R2,Z4=R4(8.2-11)麦克斯威-文氏电桥可用于测量电感线圈。设图8.2-5麦克
19、斯威-文氏电桥电桥平衡方程可改写为 Z1=Z2Z4Y3 (8.2-12)把式(8.2-11)代入式(8.2-12),得第56页,共157页,编辑于2022年,星期三两边实部和虚部分别相等,解得:Lx=R2R4C3(8.2-13)当选择C3和R3作为可调元件时,被测参数Rx和Lx的值可分别通过读数得到。实际上C3是高精度的标准电容,并且是不可调的。电桥的平衡是通过反复调节电阻R3和R4来实现的。第57页,共157页,编辑于2022年,星期三图8.2-5麦克斯威-文氏电桥麦克斯威-文氏电桥仅适用于测量品质因数Q较低(1QC1,变电容时的谐振曲线如图所示。变电容法类似于变频率法,可以推得:(8.3-
20、13)这种测量Q值的方法称为变电容法。第94页,共157页,编辑于2022年,星期三采用变频率法和变电容法测量Q值时,由于可以使用较高精度的外部仪器,而且在测量过程中,若保持输入信号幅度不变,则只需测量失谐电压与谐振时电压的比值,避免了精确测量电压绝对值的困难,因而大大提高了Q值的测量精度,特别是在高频情况下,可以大大减少分布参数对测量的影响。第95页,共157页,编辑于2022年,星期三8.3.2Q表的原理表的原理Q表是基于LC串联回路谐振特性的测量仪器。Q表由三部分组成:高频信号源、LC测量回路和指示器。图8.3-4Q表的原理第96页,共157页,编辑于2022年,星期三 信号源内阻抗Zs
21、=Rs+jXs的存在将直接影响Q表的测量精度。为了减少信号源内阻抗对测量的影响,常采用三种方式将信号源接入谐振回路:电阻耦合法、电感耦合法和电容耦合法。图8.3-4Q表的原理第97页,共157页,编辑于2022年,星期三 由于电容耦合法中的耦合电容成为串联谐振电路中的一部分,因此,可变电容C与被测电感的关系已不是简单的串联谐振关系,这会造成可变电容C的刻度读数较复杂,另外为了减少信号源内阻抗的影响,要求耦合电容的容抗很小,因此电容耦合法仅适用于高频Q表。第98页,共157页,编辑于2022年,星期三采用电阻耦合法的Q表:信号源经过一个串联大阻抗Z接到一个小电阻RH上。RH的大小一般为(0.02
22、0.2),常称为插入电阻。图8.3-5采用电阻耦合法的Q表的原理图第99页,共157页,编辑于2022年,星期三一般利用热偶式高频电流表的热电偶的加热丝作为RH。当高频电流通过RH使热丝加热时,便在热电偶中产生一个直流热电动势。图8.3-5采用电阻耦合法的Q表的原理图第100页,共157页,编辑于2022年,星期三由于RH的值远远小于回路阻抗的值及Z的值,因此,在调谐过程中RH两端电压Ui基本上保持不变。由(8.3-6)可知:(8.3-14)第101页,共157页,编辑于2022年,星期三(8.3-14)若保持回路的输入电压Ui大小不变,则接在电容C两端的电压表就可以直接用Q表值来标度。第10
23、2页,共157页,编辑于2022年,星期三(8.3-14)若使Ui减少一半,则由式(8.3-14)可知,同样大小的UC0所对应的Q值比原来增加一倍,故接在输入端的电压表可用作Q值的倍乘指示。实际的Q表,电压Ui和UC的测量是通过一个转换开关用同一表头来完成的,如图8.3-4所示。第103页,共157页,编辑于2022年,星期三电感L1和L2构成一分压器。在已知分压比的情况下,由电压表V1的读数可知道电感L2两端的电压Ui,因此电压表V1同样起着Q值倍乘的作用。电感耦合法的Q表:图8.3-6电感耦合法的Q表原理图第104页,共157页,编辑于2022年,星期三L2的电感量很小,大约为(10-10
24、10-3)H,其引入测量回路中的电阻比电阻耦合法引入的电阻要小得多,因而回路中引入电阻造成的Q值测量误差将小得多,提高了Q值的测量精度。通常电感耦合法的Q表适用于超高频频段。图8.3-6电感耦合法的Q表原理图第105页,共157页,编辑于2022年,星期三8.3.3元件参数的测量元件参数的测量利用Q表测量元件参数的简单方法是将被测元件直接跨接到测试接线端,称为直接测量法。图8.3-5和图8.3-6也是直接测试电感线圈的原理图。图8.3-6电感耦合法的Q表原理图图8.3-5电阻耦合法的Q表原理图第106页,共157页,编辑于2022年,星期三 通过调节信号源的频率或调节回路的可变电容使回路发生谐
25、振,由电容器两端的电压表可直接读出Q值,然后乘上倍乘值即可得到电感线圈的Q值。图8.3-6电感耦合法的Q表原理图图8.3-5电阻耦合法的Q表原理图第107页,共157页,编辑于2022年,星期三由Q表中测量回路本身的寄生参量及其他不完善性对测量结果所产生的影响,称为残余效应,由此而导致的测量误差称为残差。由于直接测量法不仅存在系统测量误差,还存在残差的影响,因此一般采用比较法进行测量。比较法可以较为有效地消除系统测量误差和残差的影响。比较法又分为串联比较法和并联比较法,前者适用于低阻抗的测量,后者适用于高阻抗的测量。第108页,共157页,编辑于2022年,星期三当电感线圈的电感量较小或电容器
26、的电容量很大时,属于低阻抗测量,需要串联比较法测量元件参数。LK为已知的辅助线圈;RK为其损耗电阻;ZM=RM+jXM,为被测元件阻抗。由于电阻RH很小,因此在讨论中忽略其影响。图8.3-7串联比较法原理图第109页,共157页,编辑于2022年,星期三首先用一短路线将被测元件ZM短路,调节电容C,使回路谐振。设此时的电容量为C1,被测得的品质因数为Q1。根据谐振时回路特性,得:(8.3-15)第110页,共157页,编辑于2022年,星期三(8.3-15)(8.3-16)然后断开短路线,被测元件ZM被接入回路。保持频率不变,调节电容器C,使回路再次谐振。设此时的电容量为C2,品质因数为Q2,
27、回路中的电抗满足:(8.3-17)第111页,共157页,编辑于2022年,星期三图8.3-7串联比较法原理图第112页,共157页,编辑于2022年,星期三由于XLK=1/(C1),因此式(8.3-17)可改写为(8.3-18)回路的品质因数为或:第113页,共157页,编辑于2022年,星期三所以有:(8.3-19)若被测元件为电感线圈,则XM为感性,必有XM0。由式(8.3-18)可知,此时C1C2,并求得:(8.3-20)线圈的品质因数可由式(8.3-18)和式(8.3-19)求得,即(8.3-21)第114页,共157页,编辑于2022年,星期三若被测元件为电容器,则XM为容性,必有
28、XMC1,XM=1/(CM),由式(8.3-18)求得(8.3-22)其Q值的计算公式与式(8.3-21)相同。第115页,共157页,编辑于2022年,星期三若被测元件为纯电阻,则C1=C2=C0,由式(8.3-19)可求得其阻值为(8.3-23)第116页,共157页,编辑于2022年,星期三测量电感量较大的电感器和电容量较小的电容器等高阻抗元件时,需要采用并联比较法测量元件参数。首先不接被测元件,调节可变电容C,使电路谐振。设此时电容量为C1,品质因数为Q1,则图8.3-8并联比较法的原理图第117页,共157页,编辑于2022年,星期三(8.3-24)(8.3-25)然后将被测元件并接
29、在可变电容C的两端。保持信号源频率不变,调节电容C,使回路再次发生谐振。设此时的电容量为C2,品质因数为Q2,回路中的电抗满足:第118页,共157页,编辑于2022年,星期三图8.3-8并联比较法的原理图第119页,共157页,编辑于2022年,星期三将式(8.3-24)代入上式,可解得:(8.3-26)若被测元件是电感,则XM=LM,由式(8.3-26)解得:(8.3-27)若被测元件是电容,则,由式(8.3-26)解得:第120页,共157页,编辑于2022年,星期三CM=C1C2 (8.3-28)谐振时,并联谐振回路的总电阻RT为 RT=Q2XLK=Q2XC1=令GT=1RT为回路的总
30、电导,GM=1RM为被测阻抗的电导,GK为辅助线圈的电导,即GK=RKR2K+X2LK,由于GT=GM+GK,因此得GM=GTGK (8.3-30)或第121页,共157页,编辑于2022年,星期三将式(8.3-25)代入上式,得:第122页,共157页,编辑于2022年,星期三由上式解得:(8.3-31)由式(8.3-26)和式(8.3-31),求得被测元件的Q值为(8.3-32)若被测元件为纯电阻,则由式(8.3-31)可求得其电阻值。第123页,共157页,编辑于2022年,星期三采用谐振法测量电感线圈的Q值,其主要误差有:耦合元件损耗电阻(如RH)引起的误差,电感线圈分布电容引起的误差
31、,倍率指示器和Q值指示器读数的误差,调谐电容器C的品质因数引起的误差以及Q表残余参量引起的误差。为了减少测量中的误差,需要选择优质高精度的器件作为标准件,例如调谐电容器应选择介质损耗小、品质因数高、采用石英绝缘支撑的空气电容器。另一方面,可根据测量时的实际情况,对测量的Q值做一些修正。第124页,共157页,编辑于2022年,星期三(8.3-33)Qe为测量时Q表的指示值;C为谐振时的调谐电容值。为了减少残量对测量结果的影响,在Q表的结构上需要采取一些措施,尽可能地减少回路本身的寄生电容和引线电感,如使用整体结构的标准电容器,采用大面积接地,尽可能减少连接线的长度等措施,这对于保证Q表的指标是
32、非常有效的。例如,若线圈的分布电容为CM,那么真实的Q值为第125页,共157页,编辑于2022年,星期三【例例1】利用Q表测量电感器的分布电容CM。解解:被测线圈LM直接接在Q表的测试接线端,并将可变电容C置于最大值。首先调节信号源的频率,使电路谐振,记下调谐电容值(C1)和信号源的频率(f1)。图8.3-9测量电感分布电容的原理图第126页,共157页,编辑于2022年,星期三然后使信号源的频率增加一倍,即f2=2f1,调节可变电容,使电路再次发生谐振,设此时可变电容值为C2。图8.3-9测量电感分布电容的原理图第127页,共157页,编辑于2022年,星期三由上述调试过程可知:(8.3-
33、34)(8.3-35)由于f2=2f1,因此由式(8.3-34)和式(8.3-35)解得:第128页,共157页,编辑于2022年,星期三(8.3-36)若第一次测量时f1=2 MHz,C1=460 pF,第二次测量时,f2=4 MHz,C2=100 pF,则分布电容为第129页,共157页,编辑于2022年,星期三【例例2】若以直接测量法测量电感线圈的Q值,试讨论下述两种情况下,插入电阻RH=0.02 时引起的Q值的百分误差。(1)线圈1的损耗电阻RM1=10,电路谐振时f1=1 MHz,C1=65 pF。(2)线圈2的损耗电阻RM2=0.1,电路谐振时f2=40 MHz,C2=135 pF
34、。解解:设两线圈的真实Q值分别为Q1和Q2,则第130页,共157页,编辑于2022年,星期三两线圈的Q表指示值分别为第131页,共157页,编辑于2022年,星期三测量两线圈Q值的百分误差分别为结论:当电感线圈的损耗电阻较小时,插入电阻RH对测量Q值的影响是不可忽略的。第132页,共157页,编辑于2022年,星期三8.3.4数字式数字式Q表的原理表的原理构成数字式Q表的方法有多种,仅介绍衰减振荡法构成Q表的原理。图8.3-10衰减振荡法测Q值的原理图第133页,共157页,编辑于2022年,星期三当脉冲电压作用于RLC串联振荡回路时,在欠阻尼情况下,回路中的电流为(8.3-37)式中:第1
35、34页,共157页,编辑于2022年,星期三为回路电流i的衰减振荡角频率,其波形如图8.3-11所示。由图可知,电流的幅值是按指数规律衰减的,即图8.3-11电流i的波形第135页,共157页,编辑于2022年,星期三设t1和t2时刻电流i的幅值分别为和则对上式两边取对数,得(8.3-38)第136页,共157页,编辑于2022年,星期三(8.3-38)设由t1到t2的时间内,电流振荡N次,即t2t1=NTd(8.3-39)其中,Td=2/d为电流i的振荡周期。将式(8.3-39)代入式(8.3-38)得(8.3-40)第137页,共157页,编辑于2022年,星期三(8.3-40)若选取ln
36、(I1/I2)=,即I1/I2=23.14,则Q=N (8.3-41)即Q值可以通过直接计数振荡次数N求得。I1/I2值的选定可以通过调节图8.3-10中的比较电压U1和U2来实现。第138页,共157页,编辑于2022年,星期三8.4利用变换器测量阻抗利用变换器测量阻抗结合计算技术、数字技术等的发展,根据阻抗的基本定义和特性,可利用变换器将被测元件的参数变换成与其大小成正比的电压值,然后根据电压值读出被测元件的参数。第139页,共157页,编辑于2022年,星期三设一被测阻抗Zx与一标准电阻Rb相串联,由于(8.4-1)图8.4-1 应用变换器测阻抗的原理电路因此(8.4-2)若能测得电压相
37、量和的比值,则可以求得Rx和Lx,这是利用变换器测量阻抗的原理。第140页,共157页,编辑于2022年,星期三8.4.1电阻电阻-电压变换器法电压变换器法将被测电阻变换成电压,并由电压的测量确定Rx值。图8.4-2电阻-电压变换器第141页,共157页,编辑于2022年,星期三 运算放大器为理想器件,即放大系数A,输入阻抗Ri,输出阻抗Ro=0,并且输入端虚短路(U=U+)和虚断路(Ii=0)。第142页,共157页,编辑于2022年,星期三图8.4-2电阻-电压变换器第143页,共157页,编辑于2022年,星期三运算放大器作为电压跟随器。由于运放的同相、反相输入端之间虚短路,由图可知,运
38、放的输出电压Uo即为电阻Rb上的电压,因此解得:(8.4-3)当Rb和Us一定时,Rx可以通过测量相应的电压Uo而求得。第144页,共157页,编辑于2022年,星期三由于Ib=Ix,U=U+,因此:解得:(8.4-3)当Us和Rb一定时,Rx可以通过测量相应的电压Uo求得。第145页,共157页,编辑于2022年,星期三(a)电路适于测量阻值较低的电阻,(b)电路适于测量阻值较高的电阻。输出电压Uo经A/D变换之后,接一个数字电压表就能以数字形式显示测量的结果。图8.4-2电阻-电压变换器第146页,共157页,编辑于2022年,星期三8.4.2阻抗阻抗-电压变换器法电压变换器法阻抗-电压变
39、换器采用鉴相原理。第147页,共157页,编辑于2022年,星期三 由于激励源为正弦信号,因此图中的电流、电压均用相量表示,被测阻抗Zx=Rx+jXx。变换器的输出电压相量即为被测阻抗Zx两端的电压,故(8.4-5)第148页,共157页,编辑于2022年,星期三若 Rb|Rx+jXx|则式(8.4-5)近似为(8.4-6)其中:(8.4-7)(8.4-8)第149页,共157页,编辑于2022年,星期三若能将电压相量中的分量和分量分离出来,则由式(8.4-7)可得:(8.4-9)若被测元件为电感,则由式(8.4-8)得:(8.4-10)若被测元件为电容器,则由式(8.4-8)得:(8.4-1
40、1)第150页,共157页,编辑于2022年,星期三利用鉴相原理可以将电压u1的实部和虚部分离开。图8.4-3中的鉴相器包含乘法器和低通滤波器。设us为参考电压,即us=Us costu1的实部电压u1r和虚部电压u1i分别为u1r=U1r cost则 u1=u1r+u1i=U1r cost+U1i cos第151页,共157页,编辑于2022年,星期三鉴相器1中的乘法器其两个输入端分别输入电压u1和us,乘法器的输出为u1 us=U1rUs cos2t+U1iUs cost cos(8.4-12)输出的直流分量正比于运算放大器输出u1的实部,因此,经过滤波后,滤除正弦信号,使鉴相器1的输出正
41、比于u1的实部。第152页,共157页,编辑于2022年,星期三同理,乘法器的输出经滤波后,使鉴相器2的输出正比于u1的虚部。鉴相器2的两个输入端分别输入u1和us移相/2的信号us,乘法器的输出为第153页,共157页,编辑于2022年,星期三小结小结(1)由于电阻器、电感器和电容器都随所加的电流、电压、频率、温度等因素而变化,因此在不同的条件下,其电路模型是不同的。在测量阻抗时,必须使得测量的条件和环境尽可能与实际工作条件接近,否则,测得的结果将会造成很大的误差。(2)交流电桥平衡必须同时满足两个条件:模平衡条件和相位平衡条件,即|Z1|Z3|=|Z2|Z4|1+3=2+4第154页,共1
42、57页,编辑于2022年,星期三因此交流电桥必须同时调节两个或两个以上的元件,才能将电桥调节到平衡。同时,为了使电桥有好的收敛性,必须恰当地选择可调元件。(3)利用电桥测量阻抗时,必须根据实际情况(如元件参数的大小、损耗、频率等)恰当地选择电桥,以便保证测量精度。第155页,共157页,编辑于2022年,星期三(4)利用LC回路的谐振特性进行阻抗测量的方法有电压比较法、变频率法和变电容法。Q表的原理也是利用LC回路的谐振特性。为了减少信号源内阻抗对测量的影响,通常Q表有三种方法将信号源接入LC谐振回路:电阻耦合法、电感耦合法和电容耦合法。利用Q表测量阻抗的方法常采用比较法:串联比较法用于低阻抗的测量;并联比较法用于高阻抗的测量。(5)利用变换器测量阻抗的原理是:将被测元件的参数变换成相应的电压,然后经A/D 变换后,进行数字化显示。第156页,共157页,编辑于2022年,星期三习题习题88.2 8.4 8.9第157页,共157页,编辑于2022年,星期三