《2021年中考数学必考点对点突破的55个特色专题专题24 矩形(原卷版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2021年中考数学必考点对点突破的55个特色专题专题24 矩形(原卷版)(免费下载).docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题24 矩形问题1矩形的定义:有一个角是直角的平行四边形叫做矩形。2矩形的性质(1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。3矩形判定定理(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。4矩形的面积:S=ab(a、b分别表示矩形的长、宽)【例题1】(2020湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边ABa,BCb,DAOx,则点C到x轴的距离等于()Aacosx+bsinxBacosx+bcosxCasinx+bcosxDasinx+
2、bsinx【对点练习】(2019贵州省铜仁市)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A360°B540°C630°D720°【例题2】(2020菏泽)如图,矩形ABCD中,AB5,AD12,点P在对角线BD上,且BPBA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为 【对点练习】(2019内蒙古通辽)如图,在矩形ABCD中,AD8,对角线AC与BD相交于点O,AEBD,垂足为点E,且AE平分BAC,则AB的长为 【例题3】(2020聊城)如图,在ABCD中,E为BC的
3、中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若ADAF,求证:四边形ABFC是矩形【对点练习】(2019湖北省鄂州市)如图,矩形ABCD中,AB8,AD6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F(1)求证:四边形DEBF是平行四边形;(2)当DEDF时,求EF的长一、选择题1(2020怀化)在矩形ABCD中,AC、BD相交于点O,若AOB的面积为2,则矩形ABCD的面积为()A4B6C8D102(2020达州)如图,BOD45°,BODO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F下列4个判断:OE平分BO
4、D;OFBD;DF=2AF;若点G是线段OF的中点,则AEG为等腰直角三角形正确判断的个数是()A4B3C2D13.(2019广东广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE3,AF5,则AC的长为()A4B4C10D84(2019山东泰安)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A2B4CD5.(2019湖北荆州)如图,矩形ABCD的顶点A,B,C分别落在MON的边OM,ON上,若OAOC,要求只用无刻度的直尺作MON的平分线小明的作法如下:连接AC,BD交于点E,作射线O
5、E,则射线OE平分MON有以下几条几何性质:矩形的四个角都是直角,矩形的对角线互相平分,等腰三角形的“三线合一”小明的作法依据是()ABCD二、填空题6(2020绍兴)将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号)2, 1, 2-1, 32, 37(2020泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N已知AB4,BC6,则MN的长为 8(2020黔东南州)如图,矩形ABCD中,AB2,BC=2,E为CD的中点,连接AE、BD交于点P,过点P作
6、PQBC于点Q,则PQ9.(2019湖南娄底)如图,要使平行四边形 ABCD 是矩形,则应添加的条件是 (添加一个条件即可)10.(2019黑龙江省龙东地区)如图,矩形ABCD中,AB4,BC6,点P是矩形ABCD内一动点,且SPAB SPCD,则PCPD的最小值是_11.(2019贵州省安顺市) 如图,在RtABC中,BAC90°,AB3,AC4,点D为斜边BC上的一个动点,过D分别作DMAB于点M,作DNAC于点N,连接MN,则线段MN的最小值为 .BDMNCA12.(2019湖北省咸宁市)如图,先有一张矩形纸片ABCD,AB4,BC8,点M,N分别在矩形的边AD,BC上,将矩形
7、纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM下列结论:CQCD;四边形CMPN是菱形;P,A重合时,MN2;PQM的面积S的取值范围是3S5其中正确的是 (把正确结论的序号都填上)13.(2019·贵州贵阳)如图,在矩形ABCD中,AB4,DCA30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作DFE30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是 14(2019山东潍坊)如图,在矩形ABCD中,AD2将A向内翻折,点A落在BC上,记为A,折痕
8、为DE若将B沿EA向内翻折,点B恰好落在DE上,记为B,则AB15.(2019北京市)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合)对于任意矩形ABCD,下面四个结论中,存在无数个四边形MNPQ是平行四边形;存在无数个四边形MNPQ是矩形;存在无数个四边形MNPQ是菱形;至少存在一个四边形MNPQ是正方形所有正确结论的序号是_三、解答题16(2020苏州)如图,在矩形ABCD中,E是BC的中点,DFAE,垂足为F(1)求证:ABEDFA;(2)若AB6,BC4,求DF的长17(2020贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CFBE(1)求证:四边形AEFD是平行四边形;(2)连接ED,若AED90°,AB4,BE2,求四边形AEFD的面积18(2020遂宁)如图,在ABC中,ABAC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF(1)求证:BDEFAE;(2)求证:四边形ADCF为矩形19(2019湖南怀化)已知:如图,在ABCD中,AEBC,CFAD,E,F分别为垂足(1)求证:ABECDF;(2)求证:四边形AECF是矩形