《苏教版九年级上册数学教案.docx》由会员分享,可在线阅读,更多相关《苏教版九年级上册数学教案.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、苏教版九年级上册数学教案苏教版九年级上册数学教案 一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.一起看看苏教版九年级上册数学教案!欢迎查阅! 苏教版九年级上册数学教案1 教学内容 一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 2 了解一元二次方程的概念;一般式ax+bx+c=0(a0)及其派生的概念;?应用一元二次方程概念解决一些简单题目. 1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目. 4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热
2、情. 重难点关键 1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程 一、复习引入 学生活动:列方程. 问题(1)古算趣题:“执竿进屋” 笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。 如果假设门的高为x?尺,?那么,?这个门的宽为_?尺,长为_?尺, ?根据题意,?得_. 整理、化简,得:_. 二、探索新知 学生活动:请口
3、答下面问题. (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程. 2 一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a0).这种形式叫做一元二次方程的一般形式. 2 一个一元二次方程经过整理化成ax+bx+c=0(a0)后,其中ax是二次项,a是二次项系数;bx是一次项
4、,b是一次项系数;c是常数项. 例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 2 分析:一元二次方程的一般形式是ax+bx+c=0(a0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等. 解:略 注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 2 例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项. 22 分析:通过完全平方公式和平方差公式把(
5、x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a0)的形式. 解:略 三、巩固练习 教材 练习1、2 补充练习:判断下列方程是否为一元二次方程? (1)3x+2=5y-3 (2) x=4 (3) 3x-2 2 22 52 2 2 =0 (4) x-4=(x+2) (5) ax+bx+c=0 x 四、应用拓展 22 例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程. 2 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?0即可. 22 证明:m-8m+17=(m-4)+1 2 (m-4)0 22 (m-4)+1
6、0,即(m-4)+10 不论m取何值,该方程都是一元二次方程. 2 ? 练习: 1.方程(2a4)x2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为 一元一次方程? /4m/-4 2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握: 2 (1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布臵作业 第2课时 21.1 一元二次方程 教学内容 1.一元二次方程根的概念; 2.?根据题意判定一个数是
7、否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标 了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键 1.重点:判定一个数是否是方程的根; 2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根. 教学过程 一、复习引入 学生活动:请同学独立完成下列问题. 2 问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0 列表: 问
8、题2列表: 3 老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗? 22 老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如 果抛开实际问题,问题2中还有x=-11的解. 一元二次方程的解也叫做一元二次方程的根. 2 回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题
9、的解. 2 例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 2 解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根. 2 例2.若x=1是关于x的一元二次方程a x+bx+c=0(a0)的一个根,求代数式20_(请自填)(a+b+c)的值 2 2 练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值 点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解
10、决问题的思维方法经常用到,同学们要深刻理解. 例3.你能用以前所学的知识求出下列方程的根吗? 222 (1)x-64=0 (2)3x-6=0 (3)x-3x=0 分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略 三、巩固练习 教材 思考题 练习1、2. 四、归纳小结(学生归纳,老师点评) 本节课应掌握: (1)一元二次方程根的概念; (2)要会判断一个数是否是一元二次方程的根; (3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义) 六、布臵作业 苏教版九年级上册数学教案2 二次根式 教材内容 1.本单元教学的主要内容: 二次根式的概念;二
11、次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标 1.知识与技能 (1)理解二次根式的概念. (2)理解 (a0)是一个非负数,( )2=a(a0), =a(a0). (3)掌握 ? = (a0,b0), = ? ; = (a0,b0), = (a0,b0). (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进
12、行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算. (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点 1
13、.二次根式 (a0)的内涵. (a0)是一个非负数;( )2=a(a0); =a(a0)及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1.对 (a0)是一个非负数的理解;对等式( )2=a(a0)及 =a(a0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神. 单元课时划分 本单元教学时间约需11课时,
14、具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时 21.1 二次根式 第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用 (a0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键 1.重点:形如 (a0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a0)”解决具体问题. 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是_. 问
15、题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_. 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_. 老师点评: 问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ). 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a0)的式子叫做二次根式,“ ”称为二次根号. (学生活动)议一议: 1.-1有算术平
16、方根吗? 2.0的算术平方根是多少? 3.当a0)、 、 、- 、 、 (x0,y0). 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 解:二次根式有: 、 (x0)、 、- 、 (x0,y0);不是二次根式的有: 、 、 、 . 例2.当x是多少时, 在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10, 才能有意义. 解:由3x-10,得:x 当x 时, 在实数范围内有意义. 三、巩固练习 教材P练习1、2、3. 四、应用拓展 例3.当x是多少时, + 在实数范围内有意义? 分析:要使 + 在实数范围内有意义,必须
17、同时满足 中的0和 中的x+10. 解:依题意,得 由得:x- 由得:x-1 当x- 且x-1时, + 在实数范围内有意义. 例4(1)已知y= + +5,求 的值.(答案:2) (2)若 + =0,求a20_(请自填)+b20_(请自填)的值.(答案: ) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1.形如 (a0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:同步训练 第一课时作业设计 一、选择题 1.下列式子中,是二次根式的是(
18、) A.- B. C. D.x 2.下列式子中,不是二次根式的是( ) A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B. C. D.以上皆不对 二、填空题 1.形如_的式子叫做二次根式. 2.面积为a的正方形的边长为_. 3.负数_平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_. 4.使式子 有意义的未知数x有( )个. A.0 B.1 C.2 D.无数 5.已知a、b为实数,且 +2
19、 =b+4,求a、b的值. 第一课时作业设计答案: 一、1.A 2.D 3.B 二、1. (a0) 2. 3.没有 三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得: , 当x- 且x0时, +x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-4 苏教版九年级上册数学教案3 教学内容 1. (a0)是一个非负数; 2.( )2=a(a0). 教学目标 理解 (a0)是一个非负数和( )2=a(a0),并利用它们进行计算和化简. 通过复习二次根式的概念,用逻辑推理的方法推出 (a0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a0);最后运用结论
20、严谨解题. 教学重难点关键 1.重点: (a0)是一个非负数;( )2=a(a0)及其运用. 2.难点、关键:用分类思想的方法导出 (a0)是一个非负数;用探究的方法导出( )2=a(a0). 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式? 2.当a0时, 叫什么?当a0;(2)a20;(3)a2+2a+1=(a+1)0; (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)20. 所以上面的4题都可以运用( )2=a(a0)的重要结论解题. 解:(1)因为x0,所以x+10 ( )2=x+1 (2)a20,( )2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 , =a2+2a+1 (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2 又(2x-3)20 4x2-12x+90,( )2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握: 1. (a0)是一个非负数; 2.( )2=a(a0);反之:a=( )2(a0). 六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:同步训练 17 / 17