《浙江专用2016高考数学二轮复习专题6.1.2导数及其应用精练理.doc》由会员分享,可在线阅读,更多相关《浙江专用2016高考数学二轮复习专题6.1.2导数及其应用精练理.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第2课时导数及其应用(建议用时:60分钟)一、选择题1函数f(x)x2ln x的单调递减区间为()A(1,1 B(0,1C1,) D(0,)解析由题意知,函数的定义域为(0,),又由f(x)x0,解得00时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0)D(0,1)(1,)解析因为f(x)(xR)为奇函数,f(1)0,所以f(1)f(1)0.当x0时,令g(x),则g(x)为偶函数,且g(1)g(1)0.则当x0时,g(x)0,故g(x)在(0,)上为减函数,在(,0)上为增函数所以在(0,)上,当0x1时,g(x)g
2、(1)00f(x)0;在(,0)上,当x1时,g(x)g(1)00f(x)0.综上,得使得f(x)0成立的x的取值范围是(,1)(0,1),选A.答案A4已知函数f(x)x3ax2x2(a0)的极大值点和极小值点都在区间(1,1)内,则实数a的取值范围是()A(0,2 B(0,2) C,2) D(,2)解析由题意可知f(x)0的两个不同解都在区间(1,1)内因为f(x)3x22ax1,所以根据导函数图象可得又a0,解得a2,故选D.答案D5(2013浙江卷)已知e为自然对数的底数,设函数f(x)(ex1)(x1)k(k1,2),则()A当k1时,f(x)在x1处取到极小值B当k1时,f(x)在
3、x1处取到极大值C当k2时,f(x)在x1处取到极小值D当k2时,f(x)在x1处取到极大值解析当k1时,f(x)exx1,f(1)0,f(1)不是极值,故A,B错;当k2时,f(x)(x1)(xexex2),显然f(1)0,且x在1的左侧附近f(x)0,f(x)在x1处取得极小值故选C.答案C6(2014潍坊模拟)已知函数yf(x)是定义在R上的奇函数,且当x0时,不等式f(x)xf(x)bc BcbaCcab Dacb解析设g(x)xf(x),则g(x)f(x)xf(x)0(x0),当x0时,g(x)为增函数130.32,0log3g(30.3)g(log3),即cab.答案C7(2015
4、新课标全国卷)设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0使得f(x0)0,则a的取值范围是()A. B.C. D.解析设g(x)ex(2x1),yaxa,由题知存在唯一的整数x0,使得g(x0)在直线yaxa的下方,因为g(x)ex(2x1),所以当x时,g(x)时,g(x)0,所以当x时,g(x)min2e,当x0时,g(0)1,g(1)3e0,直线ya(x1)恒过(1,0)且斜率为a,故ag(0)1,且g(1)3e1aa,解得a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值为_解析依题意知f(x)12x22ax2b,f(1)0,即122a
5、2b0,ab6.又a0,b0,ab29,当且仅当ab3时取等号,ab的最大值为9.答案910(2015温州模拟)关于x的方程x33x2a0有三个不同的实数解,则实数a的取值范围是_解析由题意知使函数f(x)x33x2a的极大值大于0且极小值小于0即可,又f(x)3x26x3x(x2),令f(x)0,得x10,x22.当x0时,f(x)0;当0x2时,f(x)0;当x2时,f(x)0,所以当x0时,f(x)取得极大值,即f(x)极大值f(0)a;当x2时,f(x)取得极小值,即f(x)极小值f(2)4a,所以解得4a0.答案(4,0)11若函数f(x)x24x3ln x在t,t1上不单调,则t的
6、取值范围是_解析对f(x)求导,得f(x)x4.由f(x)0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,所以t1t1或t3t1,解得0t1或2t3.答案(0,1)(2,3)12(2013新课标全国卷)若函数f(x)(1x2)(x2axb)的图象关于直线x2对称,则f(x)的最大值是_解析由题意知即解得a8,b15,所以f(x)(1x2)(x28x15),则f(x)4(x2)(x24x1)令f(x)0,得x2或x2或x2,当x0;当2x2时,f(x)0;2x2时,f(x)2时,f(x)0,所以当x2时,f(x)极大值16
7、;当x2时,f(x)极大值16,所以函数f(x)的最大值为16.答案16三、解答题13(2015重庆卷)设函数f(x)(aR)(1)若f(x)在x0处取得极值,确定a的值,并求此时曲线yf(x)在点(1,f(1)处的切线方程;(2)若f(x)在3,)上为减函数,求a的取值范围解(1)对f(x)求导得f(x),因为f(x)在x0处取得极值,所以f(0)0,即a0.当a0时,f(x),f(x),故f(1),f(1),从而f(x)在点(1,f(1)处的切线方程为y(x1),化简得3xey0.(2)由(1)知f(x).令g(x)3x2(6a)xa,由g(x)0解得x1,x2.当xx1时,g(x)0,即
8、f(x)0,故f(x)为减函数;当x1xx2时,g(x)0,即f(x)0,故f(x)为增函数;当xx2时,g(x)0,即f(x)0,故f(x)为减函数由f(x)在3,)上为减函数,知x23,解得a,故a的取值范围为.14(2014新课标全国卷)已知函数f(x)x33x2ax2,曲线yf(x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求a;(2)证明:当k0.当x0时,g(x)3x26x1k0,g(x)单调递增,g(1)k10时,令h(x)x33x24,则g(x)h(x)(1k)xh(x)h(x)3x26x3x(x2),h(x)在(0,2)单调递减,在(2,)单调递增,所以g(x)h(
9、x)h(2)0.所以g(x)0在(0,)没有实根综上,g(x)0在R有唯一实根,即曲线yf(x)与直线ykx2只有一个交点15(2014江西卷)已知函数f(x)(4x24axa2),其中a0得x或x(2,),故函数f(x)的单调递增区间为和(2,),(2)因为f(x),a0,由f(x)0得x或x.当x时,f(x)单调递增;当x时,f(x)单调递减;当x时,f(x)单调递增,易知f(x)(2xa)20,且f0.当1,即2a0时,f(x)在1,4上的最小值为f(1),由f(1)44aa28,得a22,均不符合题意当14,即8a4,即a8时,f(x)在1,4上的最小值可能在x1或x4上取得,而f(1)8,由f(4)2(6416aa2)8得a10或a6(舍去),当a10时,f(x)在(1,4)上单调递减,f(x)在1,4上的最小值为f(4)8,符合题意综上有a10.7