《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )
2、A米B米C米D米2、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52米C米D米3、计算的值等于( )AB1C3D4、已知锐角满足tan(+10)=1, 则锐角用的度数为( )A20B35C45D505、如图,射线,点C在射线BN上,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,设,若y关于x的函数图象(如图)经过点,则的值等于( )ABCD6、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米7、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A米B米C米D米8、在ABC中,ACB9
3、0,AC1,BC2,则sinB的值为()ABCD9、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD10、下列叙述正确的有()圆内接四边形对角相等;圆的切线垂直于圆的半径;正多边形中心角的度数等于这个正多边形一个外角的度数;过圆外一点所画的圆的两条切线长相等;边长为6的正三角形,其边心距为2A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,I是ABC的内心,O是AB边上一点,O经过点B且与AI相切
4、于点I,若tanBAC,则sinACB的值为 _2、如图,矩形ABCD中,DEAC于点E,ADE,cos,AB4,AD长为_3、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMNNC;S四边形GBEM4、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处已知,则的值为_5、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AGBE,CHBE,垂足分别为G,H,连接OH,OG,CG下列结论:CHAGHG;AGHG;BHOG;AF
5、OFOC213;5SAFGSGHC;OGACBHCD其中结论正确的序号是_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:tan45+3tan30cos60(2)解方程:(x2)(x5)22、如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60方向前进实施拦截红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45方向前进了相同的距离,刚好在D处成功拦截蓝方求红蓝双方最初相距多远(结果不取近似值)3、为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习,如图所示,学校在B处,
6、A位于学校的东北方向,C位于学校南偏东30方向,C在A的南偏西15方向(3232)km处,学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是32km/h,哪组学生先到达目的地?请说明理由(结果保留根号)4、如图1所示的是一辆混凝土布料机的实物图,图2是其工作时部分示意图,AC是可以伸缩的布料臂,其转动点A离地面BD的高度AH为3.2米当布料臂AC长度为8米,张角为时,求布料口C离地面的高度(结果保留一位小数;参考数据:,)5、如图,在RtABC中,BAC=90,点E是BC的中点,ADBC,垂足为点D,已知AB=20,;
7、求:(1)求线段AE的长;(2)求cosDAE的值-参考答案-一、单选题1、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90,A65,AO30m,tan65,BO30tan65米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边2、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义3、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数
8、据是解题的关键4、B【分析】根据特殊角的三角函数值计算即可;【详解】tan(+10)=1,且,;故选B【点睛】本题主要考查了特殊角的三角函数值,准确计算是解题的关键5、D【分析】由题意可得四边形ABQP是平行四边形,可得APBQx,由图象可得当x9时,y2,此时点Q在点D下方,且BQx9时,y2,如图所示,可求BD7,由折叠的性质可求BC的长,由锐角三角函数可求解【详解】解:AMBN,PQAB,四边形ABQP是平行四边形,APBQx,由图可得当x9时,y2,此时点Q在点D下方,且BQx9时,QD=y2,如图所示,BDBQQDxy7,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,AC
9、BN,BCCDBD, cosB,故选:D【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识理解函数图象上的点的具体含义是解题的关键6、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:解得即此时该小车离水平面的垂直高度为50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键7、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC
10、中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键8、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义9、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的南偏西方向上,故
11、B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键10、B【分析】利用圆内接四边形的性质可判断;根据圆的切线性质可判断;根据正多边形性质可判断;根据正三角形边长为6,连接OB、OC;先求出中心角BOC,根据等腰三角形性质,求出BOD12060,利用锐角三角函数可求OD6即可【详解】解:圆内接四边形对角互补但不一定相等,故不符合题意;圆的切线垂直于过切点的半径,故不符合题意;正n多边形中心角的度数等于,这个正多边形的外角和为360,一个外角的度数等于正确,故符合题意;过圆外一点所画的圆的两条切线长相等,正确,故符合题意;如
12、图,ABC为正三角形,点O为其中心;ODBC于点D;连接OB、OC;OBOC,BOC360120,BDBC3,BOD12060,tanBOD,OD6,即边长为6的正三角形的边心距为,故不符合题意,故选:B【点睛】本题考查圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距,掌握圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距是解题关键二、填空题1、#0.8【解析】【分析】连接OI,BI,作OEAC,可证AOD是等腰三角形,然后证明ODBC,进而ADOACB,解三角形AOD即可【详解】解:如图,连接OI并延长交AC于D,
13、连接BI,AI与O相切,AIOD,AIOAID90,I是ABC的内心,OAIDAI,ABICBI,AIAI,AOIADI(ASA),AOAD,OBOI,OBIOIB,OIBCBI,ODBC,ADOC,作OEAC于E,tanBAC,不妨设OE24k,AE7k,OAAD25k,DEADAE18k,OD30k,sinACB 故答案是:【点睛】本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键2、【解析】【分析】将已知角度的三角函数转换到所需要的三角形中,得到ADE=DCE=,求出AC的值,再由勾股定理计算即可【详解】ADC=A
14、ED=90,DAE+ADE=ADE+CDE=90DAE =CDE又DCE+CDE=90ADE=DCE=cos=又矩形ABCD中AB=CD=4AC=在中满足勾股定理有故答案为:【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键3、【解析】【分析】证明,由可得;结合,证明;证明,得;求出和的面积,进而由它们的差可得【详解】解:,故正确,由可得:,故正确,故不正确,故正确,故答案是:【点睛】本题考查了正方形性质,全等三角形判定和性质,相似三角形判定和性质等知识,解题的关键是层层递进,下一问要有意识应用前面解析4、【解析】【分析】根据折叠的性质和锐角三角函数的概念来解答
15、即可【详解】解:根据题意可得:在中,有,则在中, ,故故答案是:【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键5、【解析】【分析】根据四边形ABCD为正方形性质,和点E是AD的中点得出AE=,根据三角函数定义得出tanABE=,得出BG=2AG,证明BAGCBH(AAS),得出AG=BH,BG=CH,可判断正确;根据BG=2AG,利用线段差得出HG=BG-AG=2AG-AG=AG,可判断正确;取CH中点J,连结OJ,先证AGOCJO(SAS),得出AOG=COJ,GO=JO,再证HGOHJO(SSS),得出HOG=HOJ,说明点G,O,J三点共
16、线,得出GHJ为等腰直角三角形,利用勾股定理HG=可判断正确;四边形ABCD为正方形,可证AEFCBF,得出,求出,可判断正确;先证AGFCHF,得出GF=,求出SAFG,SGHC=,可判断不正确;利用sinDAC=sinOGH=,OGACBHCD,可判断正确【详解】解:四边形ABCD为正方形,AB=BC=AD,EAB=ABC=90,点E是AD的中点,AE=tanABE=,BG=2AG,AGBE,CHBE,AGB=BHC=90,ABG+BAG=90,ABG+CBH=90,BAG=CBH,在BAG和CBH中,BAGCBH(AAS),AG=BH,BG=CH,CHAGBG-BH=HG,故正确;BG=
17、2AG,HG=BG-AG=2AG-AG=AG,故正确;取CH中点J,连结OJ,CJ=,AGBE,CHBE,AGCH,GAO=JCO,点O是AC的中点,AO=CO,在AGO和CJO中,AGOCJO(SAS),AOG=COJ,GO=JO,在HGO和HJO中,HGOHJO(SSS),HOG=HOJ,GOH+HOJ=AOG+FOH+HOJ=COJ+FOH+HOJ=AOC=180,点G,O,J三点共线,HOG+HOJ=2HOG=180,HOG=90,GHJ=90,HG=HJ,GHJ为等腰直角三角形,点O为JG中点,OH=OG=OJ,HG=,BH=HG=OG,故正确;四边形ABCD为正方形,ADBC,即A
18、FBC,AEF=CBF,EAF=BCF,AEFCBF,OC-OF=, AFOFOC=213;故正确;AFG=CFH,AGF=CHF=90,AGFCHF,,,GF+FH=GH,GF=SAFG,SGHC=SAFGSGHC,故不正确;AC为正方形对角线,DAC=45,HOG=90,OH=OG,OGH=45,sinDAC=sinOGH=,OGACBHCD,故正确其中结论正确的序号是故答案为:【点睛】本题考查正方形性质,锐角三角函数值,三角形全等判定与性质,三点共线,等腰直角三角形判定与性质,勾股定理,三角形相似判定与性质,三角形面积,本题难度大,涉及知识多,图形复杂,掌握多方面知识是解题关键三、解答题
19、1、(1)0;(2)【解析】【分析】(1)根据特殊角的三角函数值,再进行化简求值即可(2)先化简为一般式,再根据因式分解法解一元二次方程即可【详解】解:(1)原式=(32-1)2-1+33312=1-32-1+32(2)x2-7x+10+2=0x-3x-4=0【点睛】本题考查了特殊角的锐角三角函数值,因式分解法解一元二次方程,牢记特殊角的三角函数和掌握解一元二次方程的方法是解题的关键2、红蓝双方最初相距()米【解析】【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90,红蓝双方相距AB=DF+CE在RtBCE中,根据锐角
20、三角函数的定义求出CE的长,同理,求出DF的长,进而可得出结论【详解】解:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90,红蓝双方相距AB=DF+CE在RtBCE中,BC=1000米,EBC=60,CE=BCsin60=1000=500米在RtCDF中,F=90,CD=1000米,DCF=45,DF=CDsin45=1000=500米,AB=DF+CE=(500+500)米答:红蓝双方最初相距()米【点睛】本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题
21、的关键3、第二组,见解析【解析】【分析】过点B作BDAC于D,在RtBCD中证得BDCD,设BDx,则CDx,在RtABD中,BAC30,利用三角函数定义表示出AD的长,在RtBDC中,利用三角函数表示出CD的长,由AD+CDAC列出方程问题得解【详解】解:如图,过点B作BDAC于D 依题意得,BAE45,ABC105,CAE15,BAC30,ACB45在RtBCD中,BDC90,ACB45,CBD45,CBDDCB,BDCD,设BDx,则CDx,在RtABD中,BAC30,AB2BD2x,tan30,ADx,在RtBDC中,BDC90,DCB45,sinDCB,BCx,CD+AD32+32,
22、x+,x32,AB2x64,BC,第一组用时:64401.6(h);第二组用时:32(h),1.6,第二组先到达目的地,答:第一组用时1.6小时,第二组用时小时,第二组先到达目的地【点睛】本题考查解直角三角形的应用,方位角的计算,勾股定理,一元一次方程,解题的关键是学会添加常用辅助线面构造直角三角形解决问题4、高度为7.0米【解析】【分析】过点C作于点E,过点A作于点F,根据矩形的判定定理可得四边形AHEF为矩形,由图中角的关系可得,在中,利用正弦三角函数可得,根据图形中即可得【详解】解:如图,过点C作于点E,过点A作于点F,四边形AHEF为矩形,.在中,答:布料口C离地面的高度为7.0米【点睛】题目主要考查矩形的判定和性质,锐角三角函数解三角形等,理解题意,作出相应辅助线是解题关键5、(1)12.5;(2)【解析】【分析】(1)根据锐角三角函数,可得,再由直角三角形的性质,即可求解;(2)根据直角三角形的面积,可得,再由锐角三角函数,即可求解【详解】解:(1),点E是BC的中点,;(2), , , AB=20,【点睛】本题主要考查了锐角三角函数,直角三角形的性质,熟练掌握锐角三角函数,直角三角形的性质是解题的关键