2021-2022学年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试卷.docx

上传人:可**** 文档编号:46183579 上传时间:2022-09-25 格式:DOCX 页数:18 大小:310.10KB
返回 下载 相关 举报
2021-2022学年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试卷.docx_第1页
第1页 / 共18页
2021-2022学年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试卷.docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2021-2022学年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试卷.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二章一元一次不等式和一元一次不等式组重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2y2、已知一次函数y=ax+b(a、b是常数)

2、,x与y的部分对应值如下表:x-3-2-10123y-4-202468下列说法中,正确的是( )A图象经过第二、三、四象限B函数值y随自变量 x的增大而减小C方程ax+b=0的解是x=2D不等式ax+b0的解集是x-13、在数轴上表示不等式的解集正确的是( )ABCD4、若代数式有意义,则实数x的取值范围是( )AB且CD且5、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )ABC3D6、若xy,则下列不等式中不成立的是( )Ax-5y-5BxyCx-y0D-5x-5y7、若mn,则下列选项中不成立的是()Am+4n+4Bm4n

3、4CD4m4n8、(a)和b在数轴上表示的点如图所示,则下列判断正确的是( )Aa1Bba0Ca10Dab09、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A5B4C3D210、如果不等式组的解集是,那么a的值可能是()AB0C0.7D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义新运算:对于任意实数a,b都有:aba(ab)+1如:252(25)+12(3)+15,那么不等式3x15的解为 _2、已知a,b是非零实数,若关于x的不等式,所解得,则一次函数的图像必经过点_3、不等式组的解集为_4、若方程组

4、的解满足2x3y1,则k的的取值范围为 _5、不等式组的解集是 _三、解答题(5小题,每小题10分,共计50分)1、解下列不等式组2、求不等式组的整数解3、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?4、解不等式,并将解集在数轴上表示;5、2021年1

5、1月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?-参考答案-一、单选题1、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向

6、不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键2、D【分析】利用待定系数法求一出函数解析式,把表格数据代入两组数值得,解方程组求出一次函数解析式,根据一次函数性质可判断选项【详解】解:设一次函数解析式为,由表格可知,一次函数过点(-1,0),(0,2),则:,解得:,一次函数解析式为:,故

7、函数经过第一、二、三象限,故选项A错误;,故函数值y随x增大而增大,故选项B错误;令,得x=-1,故选项C错误;令,得,故选项D正确;故选:D【点睛】本题主要考查了一次函数的图象和性质,待定系数法求根一次函数解析式,表格信息,解方程组是解题的关键3、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可【详解】在数轴上表示不等式的解集如下:故选:【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键4、A【分析】根据二次根式有意义的条件求不等式解集即可【详解】解:有意义可得:,解得:,故选:A【点睛】题目主要考查二次根式有意义的条件及解不等式,理解二次根式有意义的条件是解

8、题关键5、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-20,解之即可得出m2,进而可得出m=-3【详解】解:一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),m2-3=6,即m2=9,解得:m=-3或m=3又y的值随着x的值的增大而减小,m-20,m2,m=-3故选:D【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解

9、题的关键6、D【分析】根据不等式的性质逐项分析即可【详解】解:A. xy,x-5y-5,故不符合题意; B. xy,故不符合题意; C. xy,x-yx得:x-1,解不等式,得:,则不等式组的解集为:【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键2、不等式组的整数解是3,4【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,再确定其整数解【详解】解:解不等式3(x2)x10,得x2;解不等式,得x4不等式组的解集为2x4,不等式组的整数解是3,4【点睛】本题考查了一元一次不等

10、式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到3、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)y80x+24000;商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元

11、根据总利润等于两种电脑的利润之和列式整理即可得解;根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y160x+240(100x),即y80x+24000,100x2x,x33,y80x+24000,y随x的增大而减小,x为正整数,当x34时,y取最大值,则100x66,此时y-8034+2400021280

12、(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握4、,数轴表示见解析【分析】先去分母,然后再求解一元一次不等式即可【详解】解:去分母得:,去括号得:,移项、合并同类项得:,系数化为1得:;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键5、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货

13、车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论【详解】解:(1)设

14、食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3m5,又m为正整数,m可以为3,4,5,共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆(3)选择方案1所需运费为6003+4507=4950(元),选择方案2所需运费为6004+4506=5100(元),选择方案3所需运费为6005+4505=5250元)495051005250,政府应该选择方案1,才能使运费最少,最少运费是4950元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费租车辆数,分别求出三个运输方案所需总运费

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁