2009年普通高等学校招生全国统一考试数学文(全国卷I解析版).doc

上传人:飞**** 文档编号:45523281 上传时间:2022-09-24 格式:DOC 页数:12 大小:1.03MB
返回 下载 相关 举报
2009年普通高等学校招生全国统一考试数学文(全国卷I解析版).doc_第1页
第1页 / 共12页
2009年普通高等学校招生全国统一考试数学文(全国卷I解析版).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2009年普通高等学校招生全国统一考试数学文(全国卷I解析版).doc》由会员分享,可在线阅读,更多相关《2009年普通高等学校招生全国统一考试数学文(全国卷I解析版).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2009年普通高等学校招生全国统一考试数学文(全国卷I,解析版)本试卷分第错误!未找到引用源。卷(选择题)和第错误!未找到引用源。卷(非选择题)两部分第错误!未找到引用源。卷1至2页,第错误!未找到引用源。卷3至4页考试结束后,将本试卷和答题卡一并交回第卷注意事项:1答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码请认真核准条形码上的准考证号、姓名和科目2每小题选出答案后,用2铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号在试题卷上作答无效3本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,

2、只有一项是符合题目要求的参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中恰好发生次的概率其中表示球的半径一、选择题(1)的值为(A) (B) (C) (D) 【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。解:,故选择A。(2)设集合A=4,5,6,7,9,B=3,4,7,8,9,全集=AB,则集合u (AB)中的元素共有(A) 3个 (B) 4个 (C)5个 (D)6个【解析】本小题考查集合的运算,基础题。(同理1)解:,故选A。也可用摩根律:(3)不等式的解集为D (A) (B)(C)

3、 (D)【解析】本小题考查解含有绝对值的不等式,基础题。解:,故选择D。(4)已知tan=4,cot=,则tan(a+)=(A) (B) (C) (D) 【解析】本小题考查同角三角函数间的关系、正切的和角公式,基础题。解:由题,故选择B。(5)设双曲线的渐近线与抛物线相切,则该双曲线的离心率等于(A) (B)2 (C) (D)【解析】本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即,故选择C。(6)已知函数的反函数为,则(A)0 (B)1 (C)2 (D)4【解析】本小题考查反

4、函数,基础题。解:由题令得,即,又,所以,故选择C。(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种 (B)180种 (C)300种 (D)345种【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。解:由题共有,故选择D。(8)设非零向量、满足,则(A)150B)120 (C)60 (D)30【解析】本小题考查向量的几何运算、考查数形结合的思想,基础题。解:由向量加法的平行四边形法则,知、可构成菱形的两条相邻边,且、为起点处的对角线长等于菱形的边长,故选择B。(9)已知三棱

5、柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为(A) (B) (C) (D) 【解析】本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)解:设的中点为D,连结D,AD,易知即为异面直线与所成的角,由三角余弦定理,易知.故选D (10) 如果函数的图像关于点中心对称,那么的最小值为(A) (B) (C) (D) 【解析】本小题考查三角函数的图象性质,基础题。解: 函数的图像关于点中心对称 由此易得.故选A(11)已知二面角为600 ,动点P、Q分别在面内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为【解析】本小题考查二面角、空间里的距离、最

6、值问题,综合题。(同理10)解:如图分别作 ,连 ,又当且仅当,即重合时取最小值。故答案选C。 (12)已知椭圆的右焦点为F,右准线,点,线段AF交C于点B。若,则=(A) (B) 2 (C) (D) 3【解析】本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。解:过点B作于M,并设右准线与X轴的交点为N,易知FN=1.由题意,故.又由椭圆的第二定义,得.故选A 2009年普通高等学校招生全国统一考试文科数学(必修选修)第卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码请认真核准条形码上的准考证号、姓名和科目2第卷共7页,请

7、用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效3本卷共10小题,共90分二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试题卷上作答无效)(13)的展开式中,的系数与的系数之和等于_.【解析】本小题考查二项展开式通项、基础题。(同理13)解: 因所以有(14)设等差数列的前项和为。若,则_.【解析】本小题考查等差数列的性质、前项和,基础题。(同理14)解: 是等差数列,由,得。(15)已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于_.【解析】本小题考查球的截面圆性质、球的表面积,基础题。解:设球

8、半径为,圆M的半径为,则,即由题得,所以。(16)若直线被两平行线所截得的线段的长为,则的倾斜角可以是 其中正确答案的序号是 .(写出所有正确答案的序号)【解析】本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。解:两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。故填写或三解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效)设等差数列的前项和为,公比是正数的等比数列的前项和为,已知的通项公式.【解析】本小题考查等差数列与等比数列的通项公式、前项和,基础题。解:设

9、的公差为,数列的公比为,由题得解得。(18)(本小题满分12分)(注意:在试用题卷上作答无效)在中,内角A、b、c的对边长分别为a、b、c.已知,且,求b.【解析】本小题考查正弦定理、余弦定理。解:由余弦定理得,即。由正弦定理及得,即。(19)(本小题满分12分)(注决:在试题卷上作答无效) 如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 (I)证明:是侧棱的中点;求二面角的大小。(同理18) 【解析】本小题考查空间里的线线关系、二面角,综合题。(I)解法一:作交于N,作交于E,连ME、NB,则面,,设,则,在中,。在中由解得,从而 M为侧棱的中点M. 解法二:过作的平行线.(II)分析一:

10、利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。过作交于,作交于,作交于,则,面,面面,面即为所求二面角的补角.法二:利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,取SA的中点G,连GF,易证,则即为所求二面角.SABCDMzxy解法二、分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,则。()设,则,由题得,即解之个方程组得即所以是侧棱的中点。法2:设,则又故,即,解得,所以是侧棱的中点。()由()得,又,设分别是平面、的法向量,则且,即且分别令得,即,二面角的大小。(20)(本小题满分12分)(

11、注意:在试题卷上作答无效)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。()求再赛2局结束这次比赛的概率;()求甲获得这次比赛胜利的概率。【解析】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。解:记“第局甲获胜”为事件,“第局甲获胜”为事件。()设“再赛2局结束这次比赛”为事件A,则,由于各局比赛结果相互独立,故。()记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,

12、从而,由于各局比赛结果相互独立,故(21)(本小题满分12分)(注意:在试题卷上作答无效) 已知函数. ()讨论的单调性; ()设点P在曲线上,若该曲线在点P处的切线通过坐标原点,求的方程【解析】本小题考查导数的应用、函数的单调性,综合题。解:()令得或;令得或因此,在区间和为增函数;在区间和为减函数。()设点,由过原点知,的方程为,因此,即,整理得,解得或。所以的方程为或 (22)(本小题满分12分)(注意:在试题卷上作答无效) 如图,已知抛物线与圆相交于A、B、C、D四个点。()求r的取值范围()当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。解:()将抛物线代入圆的方程,消去,整理得(1)抛物线与圆相交于、四个点的充要条件是:方程(1)有两个不相等的正根即。解这个方程组得.(II) 设四个交点的坐标分别为、。则由(I)根据韦达定理有,则 令,则 下面求的最大值。方法1:由三次均值有: 当且仅当,即时取最大值。经检验此时满足题意。法2:设四个交点的坐标分别为、则直线AC、BD的方程分别为解得点P的坐标为。设,由及()得 由于四边形ABCD为等腰梯形,因而其面积则将,代入上式,并令,等,令得,或(舍去)当时,;当时;当时,故当且仅当时,有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为。- 12 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁