《对口高等考试数学知识点归纳.doc》由会员分享,可在线阅读,更多相关《对口高等考试数学知识点归纳.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、. . 对口高考河北方向数学应知应会一、代 数一、常用数集的符号表示:数集自然数集正整数集整数集有理数集实数集非零实数集合正实数集非负实数集合符号NN*(或N)ZQRR*R+R+二、集合与集合间的包含关系:三、集合的基本运算:四、充要条件:在判断充分条件与必要条件时,需注意条件与结论对应的方向。即若p是q的充分条件,则pq;若p是q的必要条件,则qp;若p是q的充要条件,则pq并且qp,也可qp。五、比较两个实数大小的法则:若a,bR,则(1)abab0;(2)abab0;(3)abab0.六、不等式的基本性质:(1)abba;对称性 (2)ab,bcac;传递性(3)abacbc;可加性*(
2、4)ab,c0acbc; ab,c0acbc;可乘性七、不等式的其他常用性质:(1)a+bcac-b;移项; (2)ab,cdacbd;同向可加性;(3)ab0,cd0acbd;同向同正可乘性;(4)ab0anbn (n,且n2);乘方性(5)ab0(nN,且n2) ;开方性(6)ab且ab0 倒数性八、利用一元二次函数的性质解一元二次不等式:判别式b24ac000方程ax2bxc0有两不等实根x1和x2,且x1x2有两相等实根x1x2无实根一元二次函数f(x)ax2bxc(a0)的图像不等式ax2bxc0(a0)的解集x|xx1,或xx2x|xR不等式ax2bxc0(a0)的解集x|x1xx
3、2九、函数的定义: 设A、B非空数集,如果按照某个确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数函数的三要素:定义域、值域和对应关系十、函数的单调性:函数单调性增函数减函数图像描述定义前提 一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间(a,b)上的任意自变量x1,x2核心实质 当x1x2时,都有f(x1) f(x2) ,那么就说函数f(x) 在区间(a,b)是曾函数。 当x1 f(x2) ,那么就说函数f(x) 在区间(a,b)是减函数。 单调区间 区间(a,b)叫做函数f(x)的曾区间。
4、区间(a,b)叫做函数f(x)的减区间。十一、函数的奇偶性:函数奇偶性偶函数奇函数图像描述定义前提 设函数f(x)的定义域为I,如果对于任意的xI,都有-xI,核心实质 并且f(x)f(x),那么函数f(x)就叫做偶函数 并且f(x)f(x),那么函数f(x)就叫做奇函数。 定义域具备性质函数奇偶性是函数在整个定义域内的性质,不可用区间分开。定义域必须关于原点对称。 十二、函数图象的变换:(1)平移变换:水平平移:yf(xa)(a0)的图像,可由yf(x)的图像向左()或向右()平移a个单位而得到竖直平移:yf(x)b(b0)的图像,可由yf(x)的图像向上()或向下()平移b个单位而得到(2
5、)对称变换:yf(x)与yf(x)的图像关于y轴对称yf(x)与yf(x)的图像关于x轴对称yf(x)与yf(x)的图像关于原点对称yf1(x)与yf(x)的图像关于直线yx对称要得到y|f(x)|的图像,可将yf(x)的图像在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变要得到yf(|x|)的图像,可将yf(x),x0的部分作出,再利用偶函数的图像关于y轴的对称性,作出x0的图像(3)伸缩变换:yAf(x)(A0)的图像,可将yf(x)图像上所有点的纵坐标变为原来的A倍,横坐标不变而得到yf(ax)(a0)的图像,可将yf(x)图像上所有点的横坐标变为原来的倍,纵坐标不变而得到十三
6、、指数幂的转化:十四、指数式和对数式的互化:设a0,且a1,N0, 十五、对数的性质与运算法则:(1)对数的基本性质:设a0,且a1则零和负数没有对数,即:N 0 1的对数等于0,即loga1=0;lg1=1,ln1=1底数的对数等于1,即logaa=1, lg10=1, lne=1 两个重要的恒等式:alogaNN;logaaNN(2)对数的运算法则:设a0,且a1则,对于任意正实数M、N以及任意实数P、m(m0)、n,都有loga(MN)=logaM+logaN loga =logaMlogaN logaM P=PlogaM loga logaN logaM nlogaM lg2+lg5=
7、1(3)换底公式:logbN (a0且a1;b0且b1);logab (a,b均大于零,且不等于1);推广logab logbc logcdlogad (a、b、c均大于零,且不等于1;d大于0).十六、Sn与an的关系: 十七、等差数列通项公式:ana1(n1)d. 或anam(nm)d,(n,mN*)十八、等差中项:如果A,那么A叫做a与b的等差中项 十九、等差数列的常用性质: (1)若an为等差数列,mnpq,(m,n ,p,qN*)则有aman= apaq .特殊情况,当mn=2p有am+an 2ap,其中ap是am与an 的等差中项(2)有穷数列中,与首末两端距离相等的两项和相等,并
8、等于首末两项之和,若项数为奇数,则等于中间项的2倍,即a2+an-1= a3+an-2 = ap+an-p+1 = a1+an = 2(3)若an是等差数列,公差为d,则a2n也是等差数列,公差为2d.(4)若an是等差数列,则ak,akm,ak2m,(k,mN*)是公差为md的等差数列(5)若(),则an是等差数列,其中k为公差(6) 若公差为d的等差数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n仍成等差数列。二十、等差数列的前n项和公式:Sn,或Snna1d .注意:若Sn(),则an是等差数列,其中2p为公差二十一、等差数列前n项和性质:项数为偶数的等差数列中,S偶-S奇=;
9、项数为奇数项的等差数列中S奇-S偶=中间项.二十二、等比数列的通项公式:ana1qn1或 anamqnm(n,mN*)二十三、等比中项:若G2ab,则G叫做a与b的等比中项,.二十四、等比数列的常用性质:(1)若an为等比数列,且mn=pq (m,n ,p,qN*),则有aman apaq特殊情况,当mn=2p时,有aman ap2.(2)在有穷等比数列中,与首末两端距离相等的两项积相等,并等于首末两项之积,若该数列的项数为奇数,则等于中间项的平方,即a2an-1= a3an-2 = apan-p+1 = a1an =(3)在等不数列中,连续n项的积构成的新数列,仍是等比数列。(4)等比数列的
10、前n项和公式: 当q1时,Snn; 当q1时, .二十五、等比数列前n项和的性质:若公比不为1的等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n仍成等比数列。二、三角函数一、终边相同角集合:|=k360(kZ)或|=2k(kZ)终边在x轴上的角的集合|= k180(kZ) 或|= k(kZ)终边在y轴上角 |= 900+k180(kZ) 或|= +k(kZ)第一象限上所有角组成的集合|k360 900+k360(kZ)第二象限上所有角的集合|900+k360 1800+k360(kZ)第三象限上所有角的集合|1800+k360 2700+k360(kZ)第四象限上所有角的集合|2
11、700+k360(k+1)360(kZ)“锐角”形成的集合:表示为|0 900“小于900的角”形成的集合:表示| 900二、弧度制及相关公式:在半径为r的圆中,长度为l的圆弧对圆心角的大小是弧度。即|(rad)。弧长公式:l|r,扇形面积公式:S扇形lr|r2角度弧度互换:三、任意角的三角函数定义:设是平面直角坐标系中一个任意角,角的终边上任意一点P(x,y),它与原点的距离为 (r0),那么角的正弦、余弦、正切分别定义为 sin,cos,tan,四、一些特殊角的三角函数值对照表:00100100101不存在0不存在0五、同角三角函数的基本关系式及重要变形:(1)平方关系:sin2cos21
12、. R(2)商数关系:tan. (3)常用的变形公式: sin2 cos2 1,sin2 cos2 1 (sincos)212 sincos(4)六、诱导公式:“奇变偶不变,符号看象限。”k2(kZ)、可以归结为k(kZ),其中k为奇数,函数名变为其余名函数;k为偶数,函数名不改变。符号取原来函数值的符号,符号符合三角函数值的符号规律。第一组:sin (k2)= sin ,cos(k2)= cos ,tan(k2)= tan ;第二组:sin()sin ,cos()cos ,tan()tan ;第三组:sin(+)sin ,cos(+)cos ,tan(+)tan ;第四组:sin ()= s
13、in ,cos()= cos ,tan()=tan ;第五组:sin( )=cos , cos( )=sin第六组:sin( )=cos , cos( )=sin第七组:sin( )=cos , cos( )=sin第八组:sin( )=cos , cos( )= sin七、两角和与差的正弦、余弦和正切公式:sin()sincoscossin sin()sincoscossincos()coscossinsin cos()coscossinsintan() tan()八、二倍角公式及其变形公式:sin22sincos , cos2cos2sin22cos2112sin2 ,tan2 ;sin2
14、sincos,变形公式:九、辅助角公式:函数f()acosbsin(a,b为常数),可以化为f()sin(),或f()cos(),其中 , , , 所在象限由a、b的符号确定。十、三角函数及其图象:ysinx在0,2图像,描出五个关键点(0,0)、(,0)、(2,0)ycos在0,2图像,描出五个关键点(0,1)、(,-1)、 (2,1)十一、利用函数ysinx的图像变换得到yAsin(x)的图像:方法一:十二、正弦定理:2R,R是ABC外接圆半径 已知两角和任一边,求另一角和其他两条边;已知两边和其中一边的对角,求另一边和其他两角。;a2RsinA,b2RsinB,c2RsinC; sinA
15、,sinB,sinC ,abcsinAsinBsinC,asinBbsinA,bsinCcsinB,asinCcsinA。十三、余弦定理:a2b2c22bccosA;b2a2c22accosB;c2a2b22abcosC. 求角公式:cosA cosB cosC已知三边,求各角;已知两边和它们的夹角,求第三边和其他两个角。十四、已知a,b和A解三角形:A为锐角A为钝角或直角图形关系absinAabsinAbsinAabababab解无解一解两解一解一解无解三、解析几何一、线段中点坐标公式: 二、两点间距离公式:,三、斜率计算公式:四、直线方程: (A,B不全为0)五、平行线、垂直线系方程六、点
16、到直线的距离、平行线间距离公式 七、两直线的夹角公式:八、圆的一般方程,标准方程,过圆上一点圆的切线方程()圆心()半径九、椭圆的标准方程(1)通径:;(2);(3),特殊地时(4)特殊地时,(5)十、双曲线的标准方程(1)通径:;(2);(3),特殊地时(4)特殊地时,(5)十一、抛物线的标准方程(1)通径:2p (2)开口向右的焦点弦长公式:(3)两个直角的结论(自己补上)重点:圆锥曲线的弦长公式 四、立体几何一、几个比较常用的结论:1、过直线外一点有且只有一条直线与已知直线平行.2、过直线外一点有无数条直线与已知直线垂直.3、过直线外一点有且只有一个平面与已知直线垂直.4、过直线外一点有
17、无数多个平面与已知直线平行.5、如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.6、过平面外一点有且只有一条直线与这个平面垂直.7、如果两条平行线中的一条垂直于一个平面,那么另外一条也垂直于这个平面.8、垂直于同一条直线的两个平面平行.9、垂直于同一个平面的两个平面的位置关系可以是:平行或相交.10、平行于同一个平面的两个平面平行,平行于同一条直线的两条直线平行.11、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面.12、一条直线垂直于两个平行平面中的一个平面,它也垂直于另外一个.13、夹在两个平行平面内的两条平行线段相等.14、过平面外一点有且只有一个平面
18、和已知平面平行.15、两条直线被三个平行平面所截,截得的线段成比例.二、易错易混概念及部分结论:1、两条直线的夹角范围是_.2、两条异面直线的夹角范围是_.3、直线与平面所成角的范围是_.4、斜线与平面所成角的范围是_.说明:(1)斜线与平面所成的角实际上是斜线与其在平面内的射影所成的角.(2)斜线与平面所成的角是这条斜线与平面内经过斜足的直线所成的一切角中最小的角.(3)直线m与某平面平行,则直线m与该平面的距离就是直线m上任一点到平面的距离.三、二面角概念及部分结论:二面角的平面角的找法:过棱上一点,分别在二面角的两个平面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角。.
19、 (1)做出二面角的平面角时要注意:顶点必须在棱上,两条射线必须分别在两个平面内,且都与棱垂直,二面角的大小与平面角的顶点在棱上的位置无关,因此,常选用棱上特殊的点作为平面角的顶点,如:端点或者中点是经常找得位置.PABO四、证明平行、垂直的定理(一)线线平行公理4:_在三角形中有中点时,要构造_在平行四边形中通过证明一组对边平行且相等,得出_线面垂直的性质定理:若,则_线面平行的性质定理:若,则_面面平行的性质定理:若,则_(二)线面平行线面平行的判定定理:若,则_面面平行的性质定理:若,则_(三)面面平行面面平行的判定定理:若,则_推论1:若则_推论2:若是异面直线,则_传递性:若,则_(
20、四)线线垂直线面垂直的定义:若,则_若,则_三垂线定理:若,则_三垂线逆定理:若,则_(五)线面平行线面垂直的判定定理:若,则_面面垂直的性质定理:若,则_若,则_若,则_(六)面面垂直面面垂直的判定定理:若,则_定义法:证明二面角的平面角是直角,就可以得出二面角的两个半平面垂直五、线面的位置关系1、两条直线的位置关系:_2、直线与平面的位置关系:_3、平面与平面的位置关系:_六、常见定理及结论1、平面的基本性质推论推论推论2、射影长定理:若,则_3、最小角定理:PA为的一条斜线,,是PA与内所有直线所成的角中的最小角。4、角平分线定理:(1)若P为外的一点,,则点P在内的射影O在的角平分线上
21、。PBCA(2)若P为外的一点,,点P到的两边AB,AC的距离相等,即PM=PN ,则点P在内的射影O在的角平分线上。5、三面角余弦定理6、正方体的结论:如图若其棱长为a,则正方体的对角线长为_正方体的体对角线与和它异面的面对角线的夹角为_( )正方体的面对角线的夹角:与AD1 _,与_,与_7、正四面体(各棱长都相等,各面是全等的正三角形)如图相对棱互相垂直_相对棱的中点连成的线段的长为这两条相对棱之间的距离顶点在底面的射影为底面三角形的中心PA,AB,BC,CP中点连成的四边形是_备注:正三棱锥的结论是_8、三棱锥的常见结论两个外心的结论若三条侧棱相等(PA=PB=PC)则顶点P在底面AB
22、C内的射影O为ABC的外心若三条侧棱与底面ABC所成的角相等(),则顶点P在底面ABC内的射影O为ABC的外心特殊地:若ABC为正三角形,则该射影为ABC_心。 若ABC为直角三角形,则该射影为ABC_心。两个内心的结论若三棱锥的顶点P到底面ABC的三边的距离相等,则顶点P在底面ABC内的射影O为ABC的内心若三条侧棱与底面ABC所成的角相等(),则顶点P在底面ABC内的射影O为ABC的外心三个垂心的结论若三条侧棱两两垂直,则顶点P在底面ABC内的射影O为ABC的垂心若三个侧面两两垂直,则顶点P在底面ABC内的射影O为ABC的垂心若三棱锥只有两组相对棱互相垂直,则顶点P在底面ABC内的射影O为
23、ABC的垂心,且另一组相对棱也互相垂直。五、概率一、两个基本的计数原理:(1)分类计数原理加法原理:如果完成一件事,有n类方式,N=K1+K2+Kn种不同的方法。(2)分步计数原理乘法原理:如果完成一件事,需要分成n个步骤,N=K1K2 Kn种不同的方法。二、排列数公式: 其中m 、nN* (mn)说明:排列数公式中,当m=n时,有由1到n的正整数的连乘积,叫做n的阶乘,记作n! 即排列数公式中,当mn时,排列数公式还可以写成三、组合数公式: 其中m nN* (mn).说明:由于 还可以写作规定:四、组合数的性质公式:五、二项式定理:二项式通项公式:(第m+1项)展开式共n+1项,各项的二项式
24、系数为:各项二项式系数和:奇数项与偶数项的二项式系数和相等都为在二项式展开式中,与首末两端等距离的两项的二项式系数相等有关系数:例 已知各项系数和:_常数项:_奇数项的系数和:_偶数项的系数和:_六、事件及概率事件间的关系事件间的运算符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA,且AB,那么称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,那么称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件 A与