《同角三角函数基本关系式精品文稿.ppt》由会员分享,可在线阅读,更多相关《同角三角函数基本关系式精品文稿.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、同角三角函数基本关系式第1页,本讲稿共16页一:温故知新一:温故知新 问题问题2.图图1中的三角函数线是:中的三角函数线是:正弦线正弦线;余弦线余弦线;正切线正切线.;问题问题3.问题问题1中三角函数是以单位圆上点的坐标来定义的,你能从圆的几何中三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角的不同三角函数之间的关系吗?性质出发,讨论一下同一个角的不同三角函数之间的关系吗?问题问题1.如图如图1,设,设 是一个任意角,是一个任意角,它的它的终边终边 与单位圆交于与单位圆交于 ,那么由三,那么由三角函数的定义可知:角函数的定义可知:Oxy图11(x,y)第2页,本讲
2、稿共16页二、探究新知:二、探究新知:问题问题 当角当角 的终边在坐标轴上时的终边在坐标轴上时,关系式是否还成立?关系式是否还成立?1、探究同角正弦、余弦之间的关系、探究同角正弦、余弦之间的关系Oxy图2 当角当角 的终边在的终边在 轴上时轴上时,当角当角 的终边在的终边在 轴上时轴上时,问题问题当角当角 的终边不在坐标轴上时正弦、余弦之间的关的终边不在坐标轴上时正弦、余弦之间的关系是什么?(如图)系是什么?(如图)平方关系平方关系第3页,本讲稿共16页2.观察任意角观察任意角 的三角函数的定义的三角函数的定义商数关系商数关系思考:思考:这两个公式的前提是这两个公式的前提是“同角同角”,因此因
3、此 注:注:商的关系不是对任意角都成立商的关系不是对任意角都成立 ,是在等式两,是在等式两边都有意义的情况下,等式才成立边都有意义的情况下,等式才成立()2222sinsinsinsinsinaaaaa写成写成的平方,不能将的平方,不能将的简写,读作的简写,读作是是第4页,本讲稿共16页三、例题互动三、例题互动类型一:类型一:应用同角三角函数的基本关系解决三角函数的求值问题应用同角三角函数的基本关系解决三角函数的求值问题解:解:0707全国全国1 1第5页,本讲稿共16页解解:当当 是第一象限角时是第一象限角时,当当 是第二象限角时,是第二象限角时,自我反思:自我反思:第6页,本讲稿共16页方
4、程方程(组组)思思想想解解:第7页,本讲稿共16页讨论交流:讨论交流:移项变形:移项变形:常用于正弦、余弦函数的常用于正弦、余弦函数的相互转化,相互求解。相互转化,相互求解。注:注:在开方时,由角在开方时,由角 所在的象限来确定开方后的符号。所在的象限来确定开方后的符号。即即第8页,本讲稿共16页变形:变形:由正弦正切,求余弦由正弦正切,求余弦由余弦正切,求正弦由余弦正切,求正弦由正弦余弦,求正切由正弦余弦,求正切注:注:所得三角函数值的符号是由另外两个三角函所得三角函数值的符号是由另外两个三角函数值的符号确定的。数值的符号确定的。第9页,本讲稿共16页第10页,本讲稿共16页类型二:类型二:
5、应用同角三角函数的基本关系化简三角函数式应用同角三角函数的基本关系化简三角函数式解题思想:解题思想:统一消元的统一消元的思想思想,常用化简方常用化简方法法“切化弦切化弦”。第11页,本讲稿共16页解题思路:公式变形解题思路:公式变形第12页,本讲稿共16页例题例题6证法一:证法一:证法二:证法二:因为所以发散思维发散思维 提问:本题还有其提问:本题还有其他证明方法吗?他证明方法吗?交流总结:证明一个三角交流总结:证明一个三角恒等式的方法注意选择最优解恒等式的方法注意选择最优解 类型三类型三 应用同角三角函数的基本关系证明三角恒等式应用同角三角函数的基本关系证明三角恒等式所以,原式成立所以,原式
6、成立第13页,本讲稿共16页左边所以原式成立所以原式成立证法三:证法三:第14页,本讲稿共16页三角函数恒等式证明的一般方法三角函数恒等式证明的一般方法(2)证明原等式的等价关系:)证明原等式的等价关系:利用作差法证明等式两边之差为零。利用作差法证明等式两边之差为零。注:注:要注意两边都有意义的条件下才恒等要注意两边都有意义的条件下才恒等(1)从一边开始证明它等于另一边)从一边开始证明它等于另一边(由繁到简)(由繁到简)(3)证明左、右两边等于同一式子)证明左、右两边等于同一式子第15页,本讲稿共16页四、归纳总结:四、归纳总结:(2 2)三种基本题型三种基本题型:三角函数值的计算问题:利用平方关系时,往往要开方,三角函数值的计算问题:利用平方关系时,往往要开方,因此要先根据角的所在象限确定符号,即将角所在象限因此要先根据角的所在象限确定符号,即将角所在象限 进行分类讨论。进行分类讨论。化简题:一定要在有意义的前提下进行。化简题:一定要在有意义的前提下进行。证明问题。证明问题。(1)同角三角函数的基本关系式)同角三角函数的基本关系式 本节课同学们有哪些学习体验与收获,学到了哪些数学知识与方法本节课同学们有哪些学习体验与收获,学到了哪些数学知识与方法第16页,本讲稿共16页