《九年级数学下册27.2.3相似三角形的应用举例教案新版新人教版.doc》由会员分享,可在线阅读,更多相关《九年级数学下册27.2.3相似三角形的应用举例教案新版新人教版.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、相似三角形的应用举例 教学目标:能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如 测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 教学过程:一、预习检测案:测量旗杆的高度ABEDF操作:在旗杆影子的顶部立一根标杆,借助太阳光线构造相似三角形,旗杆AB的影长米,标杆高米,其影长米,求AB:分析:太阳光线是平行的_又_90_,即AB=_二合作探究案:探究一:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m
2、,求金字塔的高度BO 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度解:探究二:.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?方案一:先从B点出发与AB成90角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上那么A、B之间的距离是多少?DCOOBA探究三:已知左、右并排的两棵大树的高分别是AB6cm和CD12m,两树的根部的距离BD5m一个身高1
3、.6m的人沿着正对这两棵树的一条水平直路 l 从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?IIIIII分析:如图,说观察者眼睛的位置为点F,画出观察者的水平视线FG,它交AB、CD于点H、K视线FA、FG的夹角CFK是观察点C时的仰角由于树的遮挡,区域I和II都在观察者看不到的区域(盲区)之内三达标测评案:1已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是( ) 。 A15mB60 C20mD2一斜坡长70m,它的高为5m,将某物从斜坡起点推到坡上20m处停止下,停下地点的高度为( ) ABCD3如图,某测量工作人员与
4、标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。4如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米)第4题图 5. 如图:小明想测量一颗大树AB的高度,发现树的影子恰好落在土坡的坡面CD和地面CB上,测得CD=4m,BC=10m,CD与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?6、如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CDAB,若测得CD5m,AD15m,ED=3m,则A、B两点间的距离为多少?ABDCE7、如图所示,要测量河两岸相对的两点A,B的距离,先从B处出发与AB成90角方向,向前走80米到C处立一标杆,然后方向不变向前走50米至D处,在D处转90,沿DE方向走30米,到E处,使A(目标物),C(标杆)与E在同一条直线上,那么可测得A,B间的距离是_.8. 8.如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙1.4m,BD长0.55m,求该梯子的长。3