2021高考数学大一轮复习高考大题专项练五高考中的解析几何理新人教A版.docx

上传人:飞**** 文档编号:45235030 上传时间:2022-09-23 格式:DOCX 页数:8 大小:2.32MB
返回 下载 相关 举报
2021高考数学大一轮复习高考大题专项练五高考中的解析几何理新人教A版.docx_第1页
第1页 / 共8页
2021高考数学大一轮复习高考大题专项练五高考中的解析几何理新人教A版.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2021高考数学大一轮复习高考大题专项练五高考中的解析几何理新人教A版.docx》由会员分享,可在线阅读,更多相关《2021高考数学大一轮复习高考大题专项练五高考中的解析几何理新人教A版.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高考大题专项练五高考中的解析几何高考大题专项练第10页1.设O为坐标原点,动点M在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=2NM.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OPPQ=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=2NM得x0=x,y0=22y.因为M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)证明由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ=(-3,t),P

2、F=(-1-m,-n),OQPF=3+3m-tn,OP=(m,n),PQ=(-3-m,t-n).由OPPQ=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以OQPF=0,即OQPF.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.设椭圆C:x22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMA=OMB.(1)解由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为1,22或1,-22.所以AM的方程为y=

3、-22x+2或y=22x-2.(2)证明当l与x轴重合时,OMA=OMB=0,当l与x轴垂直时,OM为AB的垂直平分线,所以OMA=OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k0),A(x1,y1),B(x2,y2),则x12,x20时,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=4kt,所以12=t2-(x1+x2)t+x1x2t2=t2-4kt+4ktt2=1.(2)设M(x,y),由x2=4y得y=x24,所以y=x2.所以抛物线在Ax1,x124处的切线方程为y-x124=x12(x-x1),即y=x1x2-x124,同理可得,抛物线在B

4、x2,x224处的切线方程为y=x2x2-x224,由y=x1x2-x124,y=x2x2-x224,得x=x1+x22,y=x1x24.因为E(4,0),即t=4.所以由(1)得,x1+x2=4k,x1x2=16k,所以x=2k,y=4k,所以y=2x,即点M(x,y)在直线y=2x上.5.设椭圆x2a2+y2b2=1(ab0)的左焦点为F,上顶点为B.已知椭圆的离心率为53,点A的坐标为(b,0),且|FB|AB|=62.(1)求椭圆的方程;(2)设直线l:y=kx(k0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若|AQ|PQ|=524sinAOQ(O为原点),求k的值.解:(

5、1)设椭圆的焦距为2c,由已知有c2a2=59,又由a2=b2+c2,可得2a=3b.由已知可得,|FB|=a,|AB|=2b.由|FB|AB|=62,可得ab=6,从而a=3,b=2.所以,椭圆的方程为x29+y24=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1y20,故|PQ|sinAOQ=y1-y2.又因为|AQ|=y2sinOAB,而OAB=4,故|AQ|=2y2.由|AQ|PQ|=524sinAOQ,可得5y1=9y2.由方程组y=kx,x29+y24=1,消去x,可得y1=6k9k2+4.易知直线AB的方程为x+y-2=0,由方程组y=kx,x+

6、y-2=0,消去x,可得y2=2kk+1.由5y1=9y2,可得5(k+1)=39k2+4,两边平方,整理得56k2-50k+11=0,解得k=12,或k=1128.所以,k的值为12或1128.6.(2019全国,理21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连接QE并延长交C于点G.证明:PQG是直角三角形;求PQG面积的最大值.解:(1)由题设得yx+2yx-2=-12,化简得x24+y22=1(|x|2

7、),所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)证明:设直线PQ的斜率为k,则其方程为y=kx(k0).由y=kx,x24+y22=1,得x=21+2k2.记u=21+2k2,则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率为k2,方程为y=k2(x-u).由y=k2(x-u),x24+y22=1,得(2+k2)x2-2uk2x+k2u2-8=0.()设G(xG,yG),则-u和xG是方程()的解,故xG=u(3k2+2)2+k2,由此得yG=uk32+k2.从而直线PG的斜率为uk32+k2-uku(3k2+2)2+k2-u=-1k.所以PQPG,即

8、PQG是直角三角形.由得|PQ|=2u1+k2,|PG|=2ukk2+12+k2,所以PQG的面积S=12|PQ|PG|=8k(1+k2)(1+2k2)(2+k2)=8(1k+k)1+2(1k+k)2.设t=k+1k,则由k0,得t2,当且仅当k=1时取等号.因为S=8t1+2t2在区间2,+)内单调递减,所以当t=2,即k=1时,S取得最大值,最大值为169.因此,PQG面积的最大值为169.7.如图,已知椭圆x24+y23=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点.(1)若点G的横坐标为-14,求直线AB的斜率;(2

9、)记GFD的面积为S1,OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.解:(1)依题意可知,直线AB的斜率存在,设其方程为y=k(x+1),将其代入x24+y23=1,整理得(4k2+3)x2+8k2x+4k2-12=0.设A(x1,y1),B(x2,y2),所以x1+x2=-8k24k2+3.故点G的横坐标为x1+x22=-4k24k2+3=-14,解得k=12.(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x轴或y轴垂直.由(1)可得G-4k24k2+3,3k4k2+3.设点D坐标为(xD,0).因为DGAB,所以3k4k2+3-4k24k2

10、+3-xDk=-1,解得xD=-k24k2+3,即D-k24k2+3,0.因为GFDOED,且S1=S2,所以|GD|=|OD|.所以-k24k2+3-4k24k2+32+-3k4k2+32=-k24k2+3,整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.8.已知斜率为k的直线l与椭圆C:x24+y23=1交于A,B两点,线段AB的中点为M(1,m)(m0).(1)证明:k-12;(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:|FA|,|FP|,|FB|成等差数列,并求该数列的公差.(1)证明设A(x1,y1),B(x2,y2),则x124+y

11、123=1,x224+y223=1.两式相减,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.由题设知x1+x22=1,y1+y22=m,于是k=-34m.由题设得0m32,故k-12.(2)解由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m0.又点P在C上,所以m=34,从而P1,-32,|FP|=32.于是|FA|=(x1-1)2+y12=(x1-1)2+31-x124=2-x12.同理|FB|=2-x22.所以|FA|+|FB|=4-12(x1+x2)=3.故2|FP|=|FA|+|FB|,则|FA|,|FP|,|FB|成等差数列,设该数列的公差为d,则2|d|=|FB|-|FA|=12|x1-x2|=12(x1+x2)2-4x1x2.将m=34代入得k=-1.所以l的方程为y=-x+74,代入C的方程,并整理得7x2-14x+14=0.故x1+x2=2,x1x2=128,代入解得|d|=32128.所以该数列的公差为32128或-32128.8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁