《2021高考数学大一轮复习高考大题专项练四高考中的立体几何理新人教A版.docx》由会员分享,可在线阅读,更多相关《2021高考数学大一轮复习高考大题专项练四高考中的立体几何理新人教A版.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高考大题专项练四高考中的立体几何高考大题专项练第8页1.如图,在平行四边形ABCM中,AB=AC=3,ACM=90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.(1)证明由已知可得,BAC=90,BAAC.又BAAD,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)解由已知可得,DC=CM=AB=3,DA=32.又BP=DQ=23DA,所以BP=22.作QEAC,垂足为E,则QE13DC.由已知及(1)可得D
2、C平面ABC,所以QE平面ABC,QE=1.因此,三棱锥Q-APB的体积为VQ-ABP=13QESABP=13112322sin45=1.2.(2019全国,理18)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以MEB1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1CA1D,故ME
3、ND,因此四边形MNDE为平行四边形,MNED.又MN平面EDC1,所以MN平面C1DE.(2)解由已知可得DEDA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,3,2),N(1,0,2),A1A=(0,0,-4),A1M=(-1,3,-2),A1N=(-1,0,-2),MN=(0,-3,0).设m=(x,y,z)为平面A1MA的法向量,则mA1M=0,mA1A=0.所以-x+3y-2z=0,-4z=0.可取m=(3,1,0).设n=(p,q,r)为平面A1MN的法向量,则nMN=0,nA1
4、N=0.所以-3q=0,-p-2r=0.可取n=(2,0,-1).于是cos=mn|m|n|=2325=155,所以二面角A-MA1-N的正弦值为105.3.(2019浙江,19)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1平面ABC,ABC=90,BAC=30,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EFBC;(2)求直线EF与平面A1BC所成角的余弦值.解法一(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC,则A1E
5、BC.又因为A1FAB,ABC=90,故BCA1F.所以BC平面A1EF.因此EFBC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E平面ABC,故A1EEG,所以平行四边形EGFA1为矩形.由(1)得BC平面EGFA1,则平面A1BC平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在RtA1EG中,A1E=23,EG=3.由于O为A1G的中点,故EO=OG=A1G2=152,所以cosEOG=EO2+OG2-EG22EOOG=35.因此,直线EF与平面A1BC
6、所成角的余弦值是35.解法二(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A1(0,0,23),B(3,1,0),B1(3,3,23),F32,32,23,C(0,2,0).因此,EF=32,32,23,BC=(-3,1,0).由EFBC=0得EFBC.(2)设直线EF与平面A1BC所成角为.由(1)可得BC=(-3,1,0),A1C=(0,2,
7、-23).设平面A1BC的法向量为n=(x,y,z).由BCn=0,A1Cn=0,得-3x+y=0,y-3z=0.取n=(1,3,1),故sin=|cos|=|EFn|EF|n|=45.因此,直线EF与平面A1BC所成的角的余弦值为35.4.如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30,求PC与平面PAM所成角的正弦值.(1)证明因为AP=CP=AC=4,O为AC的中点,所以OPAC,且OP=23.连接OB,因为AB=BC=22AC,所以ABC为等腰直角三角形,且OBAC
8、,OB=12AC=2.由OP2+OB2=PB2知POOB.由OPOB,OPAC知PO平面ABC.(2)解如图,以O为坐标原点,OB的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,23),AP=(0,2,23).取平面PAC的法向量OB=(2,0,0),设M(a,2-a,0)(0a2),则AM=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由APn=0,AMn=0得2y+23z=9,ax+(4-a)y=0.可取n=(3(a-4),3a,-a),所以cos=23(a-4)23(a-4)2
9、+3a2+a2.由已知可得|cos|=32.所以23|a-4|23(a-4)2+3a2+a2=32,解得a=-4(舍去),a=43.所以n=-833,433,-43.又PC=(0,2,-23),所以cos=34.所以PC与平面PAM所成角的正弦值为34.5.(2019北京,理16)如图,在四棱锥P-ABCD中,PA平面ABCD,ADCD,ADBC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且PFPC=13.(1)求证:CD平面PAD;(2)求二面角F-AE-P的余弦值;(3)设点G在PB上,且PGPB=23,判断直线AG是否在平面AEF内,说明理由.(1)证明因为PA平面A
10、BCD,所以PACD.又因为ADCD,所以CD平面PAD.(2)解过A作AD的垂线交BC于点M.因为PA平面ABCD,所以PAAM,PAAD.如图,建立空间直角坐标系A-xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以AE=(0,1,1),PC=(2,2,-2),AP=(0,0,2).所以PF=13PC=23,23,-23,AF=AP+PF=23,23,43.设平面AEF的法向量为n=(x,y,z),则nAE=0,nAF=0,即y+z=0,23x+23y+43z=0.令z=1,则y=-1,x=-
11、1.于是n=(-1,-1,1).又因为平面PAD的法向量为p=(1,0,0),所以cos=np|n|p|=-33.由题知,二面角F-AE-P为锐角,所以其余弦值为33.(3)解直线AG在平面AEF内.因为点G在PB上,且PGPB=23,PB=(2,-1,-2),所以PG=23PB=43,-23,-43,AG=AP+PG=43,-23,23.由(2)知,平面AEF的法向量n=(-1,-1,1).所以AGn=-43+23+23=0.所以直线AG在平面AEF内.6.如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD平面BMC;(2)当三
12、棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.(1)证明由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为CD上异于C,D的点,且DC为直径,所以DMCM.又BCCM=C,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)解以O为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为CD的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),AM=(-2,1,1),AB=(0,2,0),
13、DA=(2,0,0).设n=(x,y,z)是平面MAB的法向量,则nAM=0,nAB=0,即-2x+y+z=0,2y=0.可取n=(1,0,2),DA是平面MCD的法向量,因此cos=nDA|n|DA|=55,sin=255.所以面MAB与面MCD所成二面角的正弦值是255.7.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB=1,AC=AA1=2,AD=CD=5,且点M和N分别为B1C和D1D的中点.(1)求证:MN平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为13,求线段A1E的
14、长.解:如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).又因为M,N分别为B1C和D1D的中点,得M1,12,1,N(1,-2,1).(1)证明:依题意,可得n=(0,0,1)为平面ABCD的一个法向量.MN=0,-52,0.由此可得MNn=0,又因为直线MN平面ABCD,所以MN平面ABCD.(2)AD1=(1,-2,2),AC=(2,0,0).设n1=(x1,y1,z1)为平面ACD1的法向量,则n1AD1=0,n1AC=0,即x1-2y
15、1+2z1=0,2x1=0.不妨设z1=1,可得n1=(0,1,1).设n2=(x2,y2,z2)为平面ACB1的法向量,则n2AB1=0,n2AC=0,又AB1=(0,1,2),得y2+2z2=0,2x2=0.不妨设z2=1,可得n2=(0,-2,1).因此有cos=n1n2|n1|n2|=-1010,于是sin=31010.所以,二面角D1-AC-B1的正弦值为31010.(3)依题意,可设A1E=A1B1,其中0,1,则E(0,2),从而NE=(-1,+2,1).又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos=NEn|NE|n|=1(-1)2+(+2)2+12=13,整
16、理得2+4-3=0,又因为0,1,解得=7-2.所以,线段A1E的长为7-2.8.(2019云南玉溪一中高三五调)如图所示,在四棱锥P-ABCD中,PC底面ABCD,四边形ABCD是直角梯形,ABAD,ABCD,AB=2AD=2CD=2.E是PB的中点.(1)求证:平面EAC平面PBC;(2)若二面角P-AC-E的余弦值为63,求直线PA与平面EAC所成角的正弦值.(1)证明PC平面ABCD,AC平面ABCD,ACPC.AB=2,AD=CD=1,AC=BC=2,AC2+BC2=AB2,ACBC.又BCPC=C,AC平面PBC.AC平面EAC,平面EAC平面PBC.(2)解如图,以C为原点,取A
17、B的中点F,以CF,CD,CP分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,-1,0).设P(0,0,a)(a0),则E12,-12,a2,CA=(1,1,0),CP=(0,0,a),CE=12,-12,a2,取n=(1,-1,0),则nCA=nCP=0,n为平面PAC的法向量.设m=(x,y,z)为平面EAC的法向量,则mCA=mCE=0,即x+y=0,x-y+az=0,取x=a(a0),则y=-a,z=-2,即m=(a,-a,-2),依题意,|cos|=mn|m|n|=aa2+2=63,则a=2.于是m=(2,-2,-2),PA=(1,1,-2).设直线PA与平面EAC所成角为,则sin=|cos|=PAm|PA|m|=23,即直线PA与平面EAC所成角的正弦值为23.12