《【优化探究】2014高考数学总复习 提素能高效题组训练 2-4 文 新人教A版.doc》由会员分享,可在线阅读,更多相关《【优化探究】2014高考数学总复习 提素能高效题组训练 2-4 文 新人教A版.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优化探究2014高考数学总复习(人教A文)提素能高效题组训练:2-4命题报告教师用书独具考查知识点及角度题号及难度基础中档稍难奇偶性判断1、2105奇偶性应用34、6、8、119周期性问题712一、选择题1已知yf(x)是定义在R上的奇函数,则下列函数中为奇函数的是()yf(|x|);yf(x);yxf(x);yf(x)x.ABC D解析:由奇函数的定义验证可知正确答案:D2(2013年郑州模拟)已知函数f(x)则该函数是()A偶函数,且单调递增 B偶函数,且单调递减C奇函数,且单调递增 D奇函数,且单调递减解析:当x0时,x0,f(x)f(x)(2x1)(12x)0;当x0,f(x)f(x)
2、(12x)(2x1)0;易知f(0)0.因此,对任意xR,均有f(x)f(x)0,即函数f(x)是奇函数当x0时,函数f(x)是增函数,因此函数f(x)单调递增,选C.答案:C3(2013年长沙模拟)已知函数f(x)是(,)上的偶函数,若对于x0,都有f(x2)f(x),且当x0,2)时,f(x)log2(x1),则f(2 011)f(2 012)()A1log23 B1log23C1 D1解析:f(x)是(,)上的偶函数,f(2 011)f(2 011)当x0时,f(x4)f(x2)f(x),则f(x)是以4为周期的函数又2 01145023,2 0124503,f(2 011)f(3)f(
3、12)f(1)log2(11)1,f(2 012)f(0)log210,f(2 011)f(2 012)1,选C.答案:C4(2013年杭州模拟)已知函数f(x)为定义在R上的奇函数,当x0时,f(x)2x2xm(m为常数),则f(1)的值为()A3 B1C1 D3解析:函数f(x)为定义在R上的奇函数,则f(0)0,即f(0)20m0,解得m1.则f(x)2x2x1,f(1)212113,f(1)f(1)3.答案:A5(2013年潍坊质检)若直角坐标平面内的两点P,Q满足条件:P,Q都在函数yf(x)的图象上;P,Q关于原点对称则称点对P,Q是函数yf(x)的一对“友好点对”(注:点对P,Q
4、与Q,P看作同一对“友好点对”)已知函数f(x)则此函数的“友好点对”有()A0对 B1对C2对 D3对解析:不妨设函数ylog2x的图象上的点P(x,log2x),x0,则其关于坐标原点对称的点的坐标为(x,log2x),如果该点在函数yx24x的图象上,则log2xx24x,问题等价于求这个方程的实数解的个数,不难知道这个方程有两个实数解,故选C.答案:C二、填空题6如果函数g(x)是奇函数,则f(x)_.解析:令x0,g(x)2x3.g(x)g(x)2x3,f(x)2x3.答案:2x37(2013年济南模拟)设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(2,1上的图象
5、,则f(2 011)f(2 012)_.解析:由于f(x)是定义在R上的周期为3的周期函数,所以f(2 011)f(2 012)f(67031)f(67131)f(1)f(1),而由图象可知f(1)1,f(1)2,所以f(2 011)f(2 012)123.答案:38(2013年宁波模拟)已知f(x)是定义在R上的奇函数,且当x0时,f(x)exa,若f(x)在R上是单调函数,则实数a的最小值是_解析:依题意得f(0)0.当x0时,f(x)e0aa1.若函数f(x)在R上是单调函数,则f(x)是R上的单调增函数,则有a10,a1,因此实数a的最小值是1.答案:19(2013年潍坊模拟)已知定义
6、在R上的偶函数满足:f(x4)f(x)f(2),且当x0,2时,yf(x)单调递减,给出以下四个命题:f(2)0;x4为函数yf(x)图象的一条对称轴;函数yf(x)在8,10上单调递增;若方程f(x)m在6,2上的两根为x1,x2,则x1x28.以上命题中所有正确命题的序号为_解析:令x2,得f(2)f(2)f(2),即f(2)0,又函数f(x)是偶函数,故f(2)0;根据可得f(x4)f(x),则函数f(x)的周期是4,由于偶函数的图象关于y轴对称,故x4也是函数yf(x)图象的一条对称轴;根据函数的周期性可知,函数f(x)在8,10上单调递减,不正确;由于函数f(x)的图象关于直线x4对
7、称,故如果方程f(x)m在区间6,2上的两根为x1,x2,则4,即x1x28.故正确命题的序号为.答案:三、解答题10已知函数f(x)x2(x0,aR)讨论函数f(x)的奇偶性,并说明理由解析:当a0时,f(x)x2,对任意x(,0)(0,),f(x)(x)2x2f(x)f(x)为偶函数当a0时,f(x)x2(x0),取x1,得f(1)f(1)20,f(1)f(1)2a0,f(1)f(1),f(1)f(1)函数f(x)既不是奇函数,也不是偶函数11已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解析:(1)设x0,则x0,所以f(x)
8、(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)要使f(x)在1,a2上单调递增,结合f(x)的图象知所以1a3,故实数a的取值范围是(1,312(能力提升)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x2)f(x)当x0,2时,f(x)2xx2.(1)求证:f(x)是周期函数;(2)当x2,4时,求f(x)的解析式;(3)计算f(0)f(1)f(2)f(2 012)的值解析:(1)f(x2)f(x),f(x4)f(x2)f(x)f(x)是周期为4的周期函数(2)当x2,0时,x0,2,由已知得f(x)2(x
9、)(x)22xx2,又f(x)是奇函数,f(x)f(x)2xx2,f(x)x22x.又当x2,4时,x42,0,f(x4)(x4)22(x4)又f(x)是周期为4的周期函数,f(x)f(x4)(x4)22(x4)x26x8.从而求得x2,4时,f(x)x26x8.(3)f(0)0,f(2)0,f(1)1,f(3)1.又f(x)是周期为4的周期函数,f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(2 008)f(2 009)f(2 010)f(2 011)f(2 012)0.f(0)f(1)f(2)f(2 012)0.因材施教学生备选练习1(2013年大同模拟)已知函数yf(
10、x)是定义在R上的偶函数,对任意xR都有f(x6)f(x)f(3),当x1,x20,3,且x1x2时,0,给出如下命题:f(3)0;直线x6是函数yf(x)的图象的一条对称轴;函数yf(x)在9,6上为增函数;函数yf(x)在9,9上有四个零点其中所有正确命题的序号为()A BC D解析:依题意可得f(36)f(3)f(3),即f(3)0,又f(x)是定义在R上的偶函数,所以f(3)f(3)0,正确;由知f(x6)f(x),即函数f(x)是以6为周期的周期函数,则f(x6)f(x6)又f(x)f(x),因此有f(x6)f(6x),即函数f(x)的图象关于直线x6对称,正确;依题意知,函数f(x
11、)在0,3上是增函数,则函数f(x)在3,0上是减函数,又函数f(x)是以6为周期的周期函数,因此函数yf(x)在9,6上是减函数,不正确;结合函数yf(x)的图象可知f(9)f(9)f(3)f(3)0,故函数yf(x)在9,9上有四个零点,正确综上所述,其中所有正确命题的序号为,选D.答案:D2(2013年哈师大附中月考)设f(x)是定义在R上的偶函数,且f(2x)f(2x),当x2,0时,f(x)x1,若在区间(2,6)内关于x的方程f(x)loga(x2)0(a0且a1)恰有4个不同的实数根,则实数a的取值范围是()A. B(1,4)C(1,8) D(8,)解析:依题意得f(x2)f(2
12、x)f(x2),即f(x4)f(x),则函数f(x)是以4为周期的函数,结合题意画出函数f(x)在x(2,6)上的图象与函数yloga(x2)的图象,结合图象分析可知,要使f(x)与yloga(x2)的图象有4个不同的交点,则有由此解得a8,即a的取值范围是(8,),选D.答案:D3(2012年高考课标全国卷)设函数f(x)的最大值为M,最小值为m,则Mm_.解析:将函数化简,利用函数的奇偶性求解f(x)1,设g(x),则g(x)g(x),g(x)是奇函数由奇函数图象的对称性知g(x)maxg(x)min0,Mmg(x)1maxg(x)1min2g(x)maxg(x)min2.答案:2- 6 -