《第四章 指数函数与对数函数章末检测- 高一上学期数学人教A版(2019)必修第一册.docx》由会员分享,可在线阅读,更多相关《第四章 指数函数与对数函数章末检测- 高一上学期数学人教A版(2019)必修第一册.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学人教A版(2019) 必修一 第四章 指数函数与对数函数一、单选题1.函数 f(x)=lnx 的定义域是( ) A.(0,+)B.0,+)C.(1,+)D.1,+)2.在某个时期,某湖泊中的蓝藻每天以6.25%的增长率呈指数增长,已知经过30天以后,该湖泊的蓝藻数大约为原来的6倍,那么经过60天后该湖泊的蓝藻数大约为原来的( ) A.18倍B.24倍C.36倍D.48倍3.已知函数 y=loga(x-3)+2 ( a0 且 a1 )的图象恒过定点P , 点P在幂函数 y=f(x) 的图象上,则 lgf(4)+lgf(25)= ( ) A.-2B.2C.1D.-14.设 a=log318
2、 , b=log424 , c=2log1413 ,则( ) A.abc B.acbC.bca D.cba5.函数 f(x)=ln(x+1)-2x 的零点所在的区间是( ) A.(0,1)B.(1,2)C.(2,e)D.(3,4)6.已知函数 y=ax 的图象如图,则 f(x)=loga(-x+1) 的图象为( ) A.B.C.D.7.若函数 f(x)=ax-x-a ( a0 且 a1 )有两个不同零点,则a的取值范围是( ) A.(2,+)B.(1,+)C.(0,+)D.(0,1)8.定义: N|f(x)g(x)| 表示 f(x)g(x) 的解集中整数解的个数,若 f(x)=log2x,g(
3、x)=12x , x(0,+) ,则 N|f(x)g(x)|= ( ) A.3B.2C.1D.0二、多选题9.下列根式与分数指数幂的互化正确的是( ) A.-x=(-x)12 B.6y2=y12(y0).10.已知函数 f(x)=ax-1+1(a0,a1) 的图象恒过点 A ,则下列函数图象也过点 A 的是( ) A.y=1-x+2 B.y=|x-2|+1C.y=log2(2x)+1D.y=2x-111.已知函数 f(x)=x+a,xax2-4ax,xa ,若关于x的方程 f(f(x)=0 有3个不同的实数根,则a的值可能为( ) A.-1B.14C.12D.112.已知函数 f(x)=2x,
4、g(x)=12f(x)-f(-x),h(x)=12f(x)+f(-x) ,则下列命题正确的是( ) A.f(x1x2)=f(x1)+f(x2)B.f(x1+x2)=f(x1)f(x2)C.h(x)2-g(x)2=1D.g(2x)=2g(x)h(x)三、填空题13.若 loga4=m , loga5=n ,则 a3m-2n= _ 14.2log23+log218+(2020)0+lne= _. 15.若函数 f(x)=logax(0a0 , V0 是1颗新丸的体积),1颗新丸放置30天后,剩余的体积变为原来的 34 ,且樟脑丸之间互不影响,那么要使衣柜能保持120天期待中的防虫防蛀效果,则应该在
5、衣柜里一次性放置至少_颗樟脑丸. 四、解答题17.已知函数 f(x)=2x,xR . (1)若函数 f(x) 在区间 a,2a 上的最大值与最小值之和为 6 ,求实数 a 的值; (2)若 f(1x)=3 ,求 3x+3-x 的值. 18.已知指数函数 f(x) 的图象过点 (12,22) (1)求 f(x) 的解析式; (2)若函数 g(x)=f(2x)-mf(x-1)+1 ,且在区间 (-1,+) 上有两个零点,求 m 的取值范围. 19.已知函数 f(x)=logax ( a0 且 a1 ) (1)若 f(3a-1)f(a) ,求实数 a 的取值范围; (2)当 a=3 时,求方程 f(
6、27x)f(3x)=-5 的解. 20.已知 a0 , a1 且 loga3loga2 ,若函数 f(x)=logax 在区间 a,2a 上的最大值与最小值之差为1 (1)求a的值; (2)解不等式 log13(x-1)log13(a-x) 21.在函数 f(x) 定义域内的某个区间 D 上,任取两个自变量 x1 、 x2 ,若都有 f(x1+x22)f(x1)+f(x2)2 ,则称 f(x) 为 D 上的凹函数;若都有 f(x1+x22)f(x1)+f(x2)2 ,则称 f(x) 为 D 上的凸函数已知函数 f(x)=ax-x(aR) (1)当 a=1 时,判断函数 f(x) 在区间 (0,+) 上的凹凸性,并证明你的结论; (2)若对任意的 x(0,1) ,都有 f(x)f(1-x)1 恒成立,求实数 a 的取值范围 22.已知 a0 且满足不等式 22a+125a-2 (1)求实数a的取值范围 (2)求不等式 loga(3x+1)loga(7-5x) (3)若函数 y=loga(2x-1) 在区间 1,3 有最小值为-2,求实数a值