矩阵论矩阵分解.ppt

上传人:石*** 文档编号:43678352 上传时间:2022-09-19 格式:PPT 页数:15 大小:757KB
返回 下载 相关 举报
矩阵论矩阵分解.ppt_第1页
第1页 / 共15页
矩阵论矩阵分解.ppt_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《矩阵论矩阵分解.ppt》由会员分享,可在线阅读,更多相关《矩阵论矩阵分解.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于矩阵论矩阵的分解第一张,PPT共十五页,创作于2022年6月矩阵分解的概述矩阵分解的概述矩阵的分解:矩阵的分解:A=AA=A1 1+A+A2 2+A Ak k 矩阵的和矩阵的和矩阵的和矩阵的和A=AA=A1 1A A2 2 A Am m 矩阵的乘积矩阵的乘积矩阵的乘积矩阵的乘积矩阵分解的原则与意义:矩阵分解的原则与意义:实际应用的需要实际应用的需要实际应用的需要实际应用的需要理论上的需要理论上的需要理论上的需要理论上的需要计算上的需要计算上的需要计算上的需要计算上的需要显示原矩阵的某些特性显示原矩阵的某些特性显示原矩阵的某些特性显示原矩阵的某些特性矩阵化简的方法与矩阵技术矩阵化简的方法与矩

2、阵技术矩阵化简的方法与矩阵技术矩阵化简的方法与矩阵技术主要技巧:主要技巧:各种标准形的理论和计算方法各种标准形的理论和计算方法各种标准形的理论和计算方法各种标准形的理论和计算方法矩阵的分块矩阵的分块矩阵的分块矩阵的分块第二张,PPT共十五页,创作于2022年6月3.1 常见的矩阵标准形与分解常见的矩阵标准形与分解常见的标准形常见的标准形等价标准形等价标准形等价标准形等价标准形相似标准形相似标准形相似标准形相似标准形合同标准形合同标准形合同标准形合同标准形本节分解:本节分解:三角分解三角分解三角分解三角分解满秩分解满秩分解满秩分解满秩分解可对角化矩阵的谱分解可对角化矩阵的谱分解可对角化矩阵的谱分

3、解可对角化矩阵的谱分解A AT T=A=A相似标准形相似标准形相似标准形相似标准形等价标准形等价标准形等价标准形等价标准形第三张,PPT共十五页,创作于2022年6月一、矩阵的三角分解一、矩阵的三角分解(triangular decomposition)triangular decomposition)方阵的方阵的LU和和LDV分解分解(P.61.61)LULU分解:分解:分解:分解:A A F Fn n n n,有下三角形矩阵有下三角形矩阵有下三角形矩阵有下三角形矩阵L L ,上三角,上三角,上三角,上三角形矩阵形矩阵形矩阵形矩阵U U ,使得使得使得使得A=LUA=LU。LDVLDV分解分

4、解分解分解:A A F Fn n n n,L L、V V分别是主对角线元分别是主对角线元分别是主对角线元分别是主对角线元素为素为素为素为1 1的下三角形和上三角形矩阵,的下三角形和上三角形矩阵,的下三角形和上三角形矩阵,的下三角形和上三角形矩阵,D D为对角为对角为对角为对角矩阵矩阵矩阵矩阵,使得使得使得使得A=LDVA=LDV。已知的方法已知的方法已知的方法已知的方法:Gauss-Gauss-消元法消元法消元法消元法例题例题例题例题1 1(P P.61.61eg1eg1)设设设设 求求求求A A的的的的LULU和和和和LDVLDV分解。分解。分解。分解。结论结论结论结论:如果矩阵:如果矩阵:

5、如果矩阵:如果矩阵A A能用两行互换以外的能用两行互换以外的能用两行互换以外的能用两行互换以外的 初等行变换化为初等行变换化为初等行变换化为初等行变换化为阶梯形,则阶梯形,则阶梯形,则阶梯形,则A A有有有有LULU分解。分解。分解。分解。第四张,PPT共十五页,创作于2022年6月三角分解的存在性和惟一性三角分解的存在性和惟一性定理定理定理定理3 3.1.1 (P P.62.62):矩阵的矩阵的矩阵的矩阵的k k 阶主子式阶主子式阶主子式阶主子式:取矩阵的前取矩阵的前取矩阵的前取矩阵的前k k行、前行、前行、前行、前k k列得到的行列列得到的行列列得到的行列列得到的行列式,式,式,式,k=1

6、k=1,2 2,n n。定理定理定理定理:A A F Fn n n n有惟一有惟一有惟一有惟一LDVLDV分解的充要条件是分解的充要条件是分解的充要条件是分解的充要条件是A A的顺序的顺序的顺序的顺序主子式主子式主子式主子式A Ak k非零,非零,非零,非零,k k=1=1,2 2,n-1n-1。讨论讨论讨论讨论 (1 1)LDVLDV分解的存在分解的存在分解的存在分解的存在LULU分解存在分解存在分解存在分解存在 (2 2)矩阵可逆与顺序主子式非零的关系)矩阵可逆与顺序主子式非零的关系)矩阵可逆与顺序主子式非零的关系)矩阵可逆与顺序主子式非零的关系定理定理定理定理3 3.2.2(P P.64

7、.64)设矩阵设矩阵设矩阵设矩阵A Fn n ,rankrank(A A)=k=k(n n),),),),如果如果如果如果A A的的的的k k阶顺序主子式大于阶顺序主子式大于阶顺序主子式大于阶顺序主子式大于0 0,则,则,则,则 A A有有有有LULU分解。分解。分解。分解。讨论讨论讨论讨论:LDVLDV分解与分解与分解与分解与LULU分解的关系分解的关系分解的关系分解的关系例题例题例题例题2 2 (P.65.65 eg2eg2)LULU分解的应用举例:分解的应用举例:分解的应用举例:分解的应用举例:求解线性方程组求解线性方程组求解线性方程组求解线性方程组AX=bAX=b第五张,PPT共十五页

8、,创作于2022年6月二、矩阵的满秩分解二、矩阵的满秩分解定义定义定义定义3 3.2 2 (P.66.66 )对秩为对秩为对秩为对秩为r r 的矩阵的矩阵的矩阵的矩阵A A F Fmm n n,如果存在秩为,如果存在秩为,如果存在秩为,如果存在秩为r r的矩阵的矩阵的矩阵的矩阵 B B F Fmm r r,C C F Fr r n n ,则则则则A=BCA=BC为为为为A A 的满秩分解。的满秩分解。的满秩分解。的满秩分解。例题例题例题例题2 2 (P P.69.69,eg5eg5)列列满满秩秩行满秩行满秩定理定理定理定理3 3.2.2:任何非零矩阵任何非零矩阵任何非零矩阵任何非零矩阵A A

9、F Fmm n n都有满秩分解。都有满秩分解。都有满秩分解。都有满秩分解。满秩分解的求法:满秩分解的求法:满秩分解的求法:满秩分解的求法:方法方法方法方法1 1:方法方法方法方法2 2例题例题例题例题1 1(P P.68.68,eg4eg4 )方法方法方法方法3 3例题例题例题例题3 3(P P.70.70,eg6eg6)方法建立方法建立方法建立方法建立 的思想的思想的思想的思想 方法实现的途径方法实现的途径方法实现的途径方法实现的途径第六张,PPT共十五页,创作于2022年6月三、可对角化矩阵的谱分解三、可对角化矩阵的谱分解将方阵分解成用谱加权的矩阵和将方阵分解成用谱加权的矩阵和谱:设谱:设

10、谱:设谱:设A A F Fn n n n,则则则则A A的谱的谱的谱的谱=1 1,2 2,s s。,P P具性质具性质具性质具性质:1.可对角矩阵的谱分解可对角矩阵的谱分解分解分析:分解分析:分解分析:分解分析:分解结果:分解结果:分解结果:分解结果:幂等矩阵幂等矩阵意义意义意义意义:可对角化矩阵可以分解成以谱加权的幂等矩阵的加权和:可对角化矩阵可以分解成以谱加权的幂等矩阵的加权和:可对角化矩阵可以分解成以谱加权的幂等矩阵的加权和:可对角化矩阵可以分解成以谱加权的幂等矩阵的加权和第七张,PPT共十五页,创作于2022年6月2、矩阵可以对角化的一个充要条件矩阵可以对角化的一个充要条件 定理定理3

11、.5(P.73)矩阵矩阵A可以相似对角化当且仅当矩阵可以相似对角化当且仅当矩阵A有谱分有谱分解解 ,满足条件:,满足条件:,满足条件:,满足条件:充分性的证明充分性的证明充分性的证明充分性的证明:在在在在A A有谱分解时有谱分解时有谱分解时有谱分解时 C Cn n=V=V 1 1 V V 2 2 V V n n第八张,PPT共十五页,创作于2022年6月3.幂等矩阵的性质幂等矩阵的性质 定理定理3.4(P.72)P Fn n,P2=P,则矩阵矩阵矩阵矩阵P PHH和矩阵(和矩阵(和矩阵(和矩阵(I I P P)仍然是幂等矩阵。仍然是幂等矩阵。仍然是幂等矩阵。仍然是幂等矩阵。P P 的谱的谱的谱

12、的谱 00,11,P P 可相似于对角形。可相似于对角形。可相似于对角形。可相似于对角形。F Fn n=N=N(P P)R R(P P)N N(P P)=V=V =0=0 ,R R(P P)=V=V =1=1 P P和(和(和(和(I I P P)的关系的关系的关系的关系 N N(I I P P)=R=R(P P),),),),R R(I I P P)=N=N(P P)Hermite 矩阵的谱分解矩阵的谱分解定理定理3.6(P.73)设设设设A A是秩为是秩为是秩为是秩为k k的半正定的的半正定的的半正定的的半正定的HermiteHermite 矩矩矩矩阵,则阵,则阵,则阵,则A A可以分解为

13、下列半正定矩阵的和。可以分解为下列半正定矩阵的和。可以分解为下列半正定矩阵的和。可以分解为下列半正定矩阵的和。A=A=v v1v v1HH+v+v2v v2HH+v vkv vkHH第九张,PPT共十五页,创作于2022年6月3.2 Schur 分解和正规矩阵分解和正规矩阵 已知已知已知已知:欧氏空间中的对称矩阵欧氏空间中的对称矩阵欧氏空间中的对称矩阵欧氏空间中的对称矩阵A A可以正交可以正交可以正交可以正交 相似于对角形。相似于对角形。相似于对角形。相似于对角形。讨论讨论讨论讨论:一般方阵一般方阵一般方阵一般方阵A A ,在什么条件下可以,在什么条件下可以,在什么条件下可以,在什么条件下可以

14、 酉相似于对角矩阵?酉相似于对角矩阵?酉相似于对角矩阵?酉相似于对角矩阵?在内积空间中讨论问题在内积空间中讨论问题在内积空间中讨论问题在内积空间中讨论问题,涉及:,涉及:,涉及:,涉及:空间空间空间空间 C Cn n、C Cn n n n,酉矩阵酉矩阵酉矩阵酉矩阵U U,U UHHU=IU=I,U U 1 1=U=UHH酉相似:酉相似:酉相似:酉相似:U UHHAU=J AU=J U U 1 1 AU=J AU=J 相似关系相似关系相似关系相似关系重点重点重点重点:理论结果理论结果理论结果理论结果列向量是空间列向量是空间列向量是空间列向量是空间C Cn n中中中中的标准正交基的标准正交基的标准

15、正交基的标准正交基第十张,PPT共十五页,创作于2022年6月一、一、Schur 分解分解1、可逆矩阵的可逆矩阵的可逆矩阵的可逆矩阵的URUR分解分解分解分解 定理定理定理定理3 3.7.7(P P.74.74)A A C Cn n n n为可逆矩阵,则存在酉矩阵为可逆矩阵,则存在酉矩阵为可逆矩阵,则存在酉矩阵为可逆矩阵,则存在酉矩阵U U和主对角线上元素皆正的上三角矩阵和主对角线上元素皆正的上三角矩阵和主对角线上元素皆正的上三角矩阵和主对角线上元素皆正的上三角矩阵R R,使得使得使得使得A=URA=UR。(称称称称A=URA=UR为矩阵为矩阵为矩阵为矩阵A A的酉分解的酉分解的酉分解的酉分解

16、)证明证明证明证明:源于:源于:源于:源于SchmidtSchmidt正交化方法正交化方法正交化方法正交化方法(P P.18.18)例题例题例题例题1 1 求矩阵求矩阵求矩阵求矩阵A A的的的的URUR分解,其中分解,其中分解,其中分解,其中定理定理定理定理3 3.8 8(P P.76.76):设矩阵设矩阵设矩阵设矩阵A A C Cmm n n是列满秩的矩阵,则矩阵是列满秩的矩阵,则矩阵是列满秩的矩阵,则矩阵是列满秩的矩阵,则矩阵A A可以分解为可以分解为可以分解为可以分解为A=QRA=QR,其中其中其中其中Q Q C Cmm n n的列向量是标准正交的向量的列向量是标准正交的向量的列向量是标

17、准正交的向量的列向量是标准正交的向量组,组,组,组,R R C Cn n n n是主对角线上元素为正数的上三角形矩阵。是主对角线上元素为正数的上三角形矩阵。是主对角线上元素为正数的上三角形矩阵。是主对角线上元素为正数的上三角形矩阵。QRQR分解分解分解分解第十一张,PPT共十五页,创作于2022年6月2、Schur 分解分解定理定理3.7(P.74)对矩阵对矩阵A Cn n,存在酉矩阵存在酉矩阵U和上三角矩阵和上三角矩阵T,使得使得 UHAU=T=证明要点:证明要点:A=PJ AP1,P=URA=PJ AP1=U(RJR1)UH=UTUH。第十二张,PPT共十五页,创作于2022年6月二、正规

18、矩阵(二、正规矩阵(Normal Matrices)1、定义定义3.3(P P.77.77 )A是正规矩阵是正规矩阵 AHA=AAH。常见的正规矩阵:常见的正规矩阵:对角矩阵对角矩阵对角矩阵对角矩阵对称和反对称矩阵:对称和反对称矩阵:对称和反对称矩阵:对称和反对称矩阵:A AT T=A=A,A AT T=A A。HermiteHermite矩阵和反矩阵和反矩阵和反矩阵和反HermiteHermite矩阵:矩阵:矩阵:矩阵:A AHH=A=A,A AHH=AA正交矩阵和酉矩阵:正交矩阵和酉矩阵:正交矩阵和酉矩阵:正交矩阵和酉矩阵:A AT TA=AAA=AAT T=I=I,A AHHA=AAA=

19、AAHH=I=I。例题例题例题例题1 1 (P.78.78,eg 10eg 10)设设设设A A为正规矩阵,为正规矩阵,为正规矩阵,为正规矩阵,B B酉相似于酉相似于酉相似于酉相似于A A,证证证证明明明明B B也是正规矩阵。也是正规矩阵。也是正规矩阵。也是正规矩阵。正规是酉相似的不变性质正规是酉相似的不变性质正规是酉相似的不变性质正规是酉相似的不变性质例题例题例题例题2 2、A A F Fmm n n,矩阵,矩阵,矩阵,矩阵A AHHA A 和矩阵和矩阵和矩阵和矩阵AAAAHH是正规矩阵。是正规矩阵。是正规矩阵。是正规矩阵。第十三张,PPT共十五页,创作于2022年6月2、正规矩阵的基本特性

20、、正规矩阵的基本特性定理定理3.10(P.78):A Cn n正规A酉相似于对角形。酉相似于对角形。推论推论推论推论:正规:正规:正规:正规A A C Cn n n nA A有个标准正交的特征向量构有个标准正交的特征向量构有个标准正交的特征向量构有个标准正交的特征向量构成空间成空间成空间成空间C Cn n 的标准正交基。的标准正交基。的标准正交基。的标准正交基。定理定理3.11(P.80)(正规矩阵的谱分解)(正规矩阵的谱分解)A正规正规A有如下谱分解:有如下谱分解:HermiteHermite性性第十四张,PPT共十五页,创作于2022年6月感感谢谢大大家家观观看看第十五张,PPT共十五页,创作于2022年6月

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁