人教版初二数学教案.pdf

上传人:赵** 文档编号:43640641 上传时间:2022-09-18 格式:PDF 页数:18 大小:457.95KB
返回 下载 相关 举报
人教版初二数学教案.pdf_第1页
第1页 / 共18页
人教版初二数学教案.pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《人教版初二数学教案.pdf》由会员分享,可在线阅读,更多相关《人教版初二数学教案.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版初二数学教案【篇一:人教版初二数学教案】本资料为本资料为 wordword 文档,请点击下载地址下载文档,请点击下载地址下载 文章来源文章来源mm 第十六章第十六章 分式分式16161 1 分式分式一、一、目标目标1 1 了解分式、有理式的概念了解分式、有理式的概念.2 2理解分式有意义的条件,分式的值为零的条件;能熟练地求出分理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件式有意义的条件,分式的值为零的条件.二、重点、难点二、重点、难点1 1重点:理解分式有意义的条件,分式的值为零的条件重点:理解分式有意义的条件,分式的值为零的条件.2 2难点

2、:能熟练地求出分式有意义的条件,分式的值为零的条件难点:能熟练地求出分式有意义的条件,分式的值为零的条件.难点是能熟练地求出分式有意义的条件,分式的值为零的条件难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别出分式的有关概念,同时还要讲清分式与分数的联系与区别.三、例、习题的意图分析三、例、习题的意图分析本章从实际问题引出分式方程本章从实际问题引出分式方程=,给出分式的描述性的定义:像这,给出分式的描述性的定义:

3、像这样分母中含有字母的式子属于分式样分母中含有字母的式子属于分式.不要在列方程时耽误时间,列方不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程程在这节课里不是重点,也不要求解这个方程.1 1本节进一步提出本节进一步提出 p4p4思考思考 让学生自己依次填出:让学生自己依次填出:,.为下为下面的面的 观察观察 提供具体的式子,就以上的式子提供具体的式子,就以上的式子,有什么共同点?,有什么共同点?它们与分数有什么相同点和不同点?它们与分数有什么相同点和不同点?p5p5归纳归纳 顺理成章地给出了分式的定义顺理成章地给出了分式的定义.分式与分数有许多类似之处,分式与分数有许多类似

4、之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两可以表示为两个整式相除的商除式不能为零,其中包括所有的分数个整式相除的商除式不能为零,其中包括所有的分数.2 2 p5 p5思考思考 引发学生思考分式的分母应满足什么条件,分式才有意引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也义?由分数的分母不能为零,用类比的方法归纳出:分式

5、的分母也不能为零不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有注意只有满足了分式的分母不能为零这个条件,分式才有意义意义.即当即当 b0b0 时,分式时,分式 才有意义才有意义.3 3 p5 p5 例例 1 1 填空是应用分式有意义的条件填空是应用分式有意义的条件分母不为零,解出字母分母不为零,解出字母x x 的值的值.还可以利用这道题,不改变分式,只把题目改成还可以利用这道题,不改变分式,只把题目改成“分式无意分式无意义义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础自变量的取值

6、范围,打下良好的基础.4 4 p12 p12拓广探索拓广探索 中第中第 1313 题提到了题提到了“在什么条件下,分式的值为在什么条件下,分式的值为0 0?”,下面补充的例,下面补充的例 2 2 为了学生更全面地体验分式的值为为了学生更全面地体验分式的值为 0 0 时,必时,必须同时满足两个条件:须同时满足两个条件:11 分母不能为零;分母不能为零;22 分子为零分子为零.这两个条件这两个条件得到的解集的公共部分才是这一类题目的解得到的解集的公共部分才是这一类题目的解.四、课堂引入四、课堂引入1 1让学生填写让学生填写 p4p4思考思考,学生自己依次填出:,学生自己依次填出:,.2 2学生看学

7、生看 p3p3 的问题:一艘轮船在静水中的最大航速为的问题:一艘轮船在静水中的最大航速为 2020 千米千米/时,时,它沿江以最大航速顺流航行它沿江以最大航速顺流航行 100100 千米所用实践,与以最大航速逆流千米所用实践,与以最大航速逆流航行航行 6060 千米所用时间相等,江水的流速为多少?千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程请同学们跟着教师一起设未知数,列方程.设江水的流速为设江水的流速为 x x 千米千米/时时.轮船顺流航行轮船顺流航行 100100 千米所用的时间为千米所用的时间为 小时,逆流航行小时,逆流航行 6060 千米所用千米所用时间时间

8、 小时,所以小时,所以=.=.3.3.以上的式子以上的式子,有什么共同点?它们与分数有什么相同点,有什么共同点?它们与分数有什么相同点和不同点?和不同点?五、例题讲解五、例题讲解p5p5 例例 1.1.当当 x x 为何值时,分式有意义为何值时,分式有意义.分析分析 已知分式有意义,就可以知道分式的分母不为零,进一步解已知分式有意义,就可以知道分式的分母不为零,进一步解出字母出字母 x x 的取值范围的取值范围.提问提问 如果题目为:当如果题目为:当 x x 为何值时,分式无意义为何值时,分式无意义.你知道怎么解题吗?你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有

9、这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念关概念.(补充补充)例例 2.2.当当 mm 为何值时,分式的值为为何值时,分式的值为 0 0?1 1 2 2(3)(3)分析分析 分式的值为分式的值为 0 0 时,必须同时满足两个条件:时,必须同时满足两个条件:11 分母不能为零;分母不能为零;22 分子为零,这样求出的分子为零,这样求出的 mm 的解集中的公共部分,就是这类题目的的解集中的公共部分,就是这类题目的解解.答案答案 1 1m=0m=0 2 2m=2m=2 3 3m=1m=1六、随堂练习六、随堂练习1 1判断以下各式哪些是整式,哪些是分式?判断以下各式哪些是整式,哪

10、些是分式?9x+4,9x+4,,2.2.当当 x x 取何值时,以下分式有意义?取何值时,以下分式有意义?1 1 2 2 3 33.3.当当 x x 为何值时,分式的值为为何值时,分式的值为 0 0?1 1 2 2(3)(3)七、课后练习七、课后练习以下数量关系,并指出哪些是正是?哪些是分式?以下数量关系,并指出哪些是正是?哪些是分式?(1(1甲每小时做甲每小时做 x x 个零件,则他个零件,则他 8 8 小时做零件小时做零件 个,做个,做 8080 个零件需个零件需小时小时.2 2轮船在静水中每小时走轮船在静水中每小时走 a a 千米,水流的速度是千米,水流的速度是 b b 千米千米/时,轮

11、时,轮船的顺流速度是船的顺流速度是 千米千米/时,轮船的逆流速度是时,轮船的逆流速度是 千米千米/时时.(3)x(3)x 与与 y y 的差于的差于 4 4 的商是的商是.2 2当当 x x 取何值时,分式取何值时,分式 无意义?无意义?3.3.当当 x x 为何值时,分式为何值时,分式 的值为的值为 0 0?八、答案:八、答案:六、六、1.1.整式:整式:9x+4,9x+4,分式:分式:,,3 31 1x=-7x=-7 2 2x=0(3)x=-1x=0(3)x=-1七、七、1 118x,a+b,;18x,a+b,;整式:整式:8x,a+b,;8x,a+b,;分式:分式:,2 2 x=3.x=

12、-1 x=3.x=-1一、目标一、目标1 1理解分式的基本性质理解分式的基本性质.2 2会用分式的基本性质将分式变形会用分式的基本性质将分式变形.二、重点、难点二、重点、难点1 1重点重点:理解分式的基本性质理解分式的基本性质.2 2难点难点:灵活应用分式的基本性质将分式变形灵活应用分式的基本性质将分式变形.教学难点是灵活应用分式的基本性质将分式变形教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质出分式的基本性质.应用分式的基本性质导出

13、通分、约分的概念,使应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析三、例、习题的意图分析1 1p7p7 的例的例 2 2 是使学生观察等式左右的已知的分母或分子,乘是使学生观察等式左右的已知的分母或分子,乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子以或除以了什么整式,然后应用分式的基本性质,相应地把分子或分母乘以或除以了这个整式,填到括号里作为答案,使分式或分母乘以或除以了这个整式,填到括号里作为答案,使分式的值不变的值不变.2 2p9p9 的例的例 3 3、例、例 4 4 地目的是进一步运用

14、分式的基本性质进行约分、地目的是进一步运用分式的基本性质进行约分、通分通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解在做提示加深对相

15、应概念及方法的理解.3 3p11p11 习题习题 16.116.1 的第的第 5 5 题是:不改变分式的值,使以下分式的分题是:不改变分式的值,使以下分式的分子和分母都不含子和分母都不含“-”号号.这一类题教材里没有例题,但它也是由分式的这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变分式的值不变.“不改变分式的值,使分式的分子和分母都不含不改变分式的值,使分式的分子和分母都不含-号号”是分式的基本性是分式的基本性质的应用之一,所以补充例质的应用之一,所以补充例 5.5.四、

16、课堂引入四、课堂引入1 1请同学们考虑:请同学们考虑:与与 相等吗?相等吗?与与 相等吗?为什么?相等吗?为什么?2 2说出说出 与与 之间变形的过程,之间变形的过程,与与 之间变形的过程,并说出变形依据?之间变形的过程,并说出变形依据?3 3提问分数的基本性质,让学生类比猜想出分式的基本性质提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解五、例题讲解p7p7 例例 2.2.填空:填空:分析分析 应用分式的基本性质把已知的分子、分母同乘以或除以同一个应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变整式,使分式的值不变.p11p11 例例 3 3约分:约

17、分:分析分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结所以要找准分子和分母的公因式,约分的结果要是最简分式果要是最简分式.p11p11 例例 4 4通分:通分:分析分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母以及所有因式的最高次幂的积,作为最简公分母.补充例补充例 5.5.不改变分式的值,使以下分式的分子和分母都不含不改变分式的值,使以下

18、分式的分子和分母都不含“-”号号.,。分析分析 每个分式的分子、分母和分式本身都有自己的符号,其中两个每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变符号同时改变,分式的值不变.解:解:=,=,=,=,=。六、随堂练习六、随堂练习1 1填空:填空:(1)=(2)=(1)=(2)=3)=(4)=3)=(4)=2 2约分:约分:1 1 2 2 3 3 4 43 3通分:通分:1 1 和和 2 2 和和3 3 和和 4 4 和和4 4不改变分式的值,使以下分式的分子和分母都不含不改变分式的值,使以下分式的分子和分母都不含“-”号号.(1)(2)(1)(2)3)(4)3

19、)(4)七、课后练习七、课后练习1 1判断以下约分是否正确:判断以下约分是否正确:1 1=2 2=3 3=0=02 2通分:通分:1 1 和和 2 2 和和3 3不改变分式的值,使分子第一项系数为正,分式本身不带不改变分式的值,使分子第一项系数为正,分式本身不带“-”号号.1 1 2 2八、答案:八、答案:六、六、1 1(1)2x(2)4b(1)2x(2)4b 3 3 bn+n(4)x+y bn+n(4)x+y2 21 1 2 2 3 3 4 4-2(x-y)2-2(x-y)23 3通分:通分:1 1=,=2 2=,=3 3=4 4=4 4(1)(2)(1)(2)3)(4)3)(4)16162

20、 2 分式的运算分式的运算16162 21 1 分式的乘除分式的乘除(一一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点二、重点、难点1 1重点:会用分式乘除的法则进行运算重点:会用分式乘除的法则进行运算.2 2难点:灵活运用分式乘除的法则进行运算难点:灵活运用分式乘除的法则进行运算.3.3.难点与突破方法难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算过转化后往经过转化后往往可视为整式的运算.

21、分式的乘除的法则和分式的乘除的法则和运算顺序可类比分数的有关内容得到运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思所以,教给学生类比的数学思想方法能较好地实现新知识的转化想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分教师要重点处理分式中有别于分数运算的有关内容,使学生标准掌握,特别是运算符号的问题,要数运算的有关内容,使学生标准掌握,特别是运算符号的问题,要抓住出现的问题认真落实抓住出现的问题认真落实.三、例、习题的意图分析三、例、习题的意图分析1

22、1p13p13 本节的引入还是用问题本节的引入还是用问题 1 1 求容积的高,问题求容积的高,问题 2 2 求大拖拉机的求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是积的高是,大拖拉机的工作效率是小拖拉机的工作效率的,大拖拉机的工作效率是小拖拉机的工作效率的 倍倍.引出了引出了分式的乘除法的实际存在的意义,进一步引出分式的乘除法的实际存在的意义,进一步引出 p14p14观察观察 从分数的乘从分数的乘除法引导学生类比出分式的乘除法的法则除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,但分析题意、

23、列式子时,不易耽误太多时间不易耽误太多时间.2 2p14p14 例例 1 1 应用分式的乘除法法则进行计算,注意计算的结果如能应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简约分,应化简到最简.3 3p14p14 例例 2 2 是较复杂的分式乘除,分式的分子、分母是多项式,应是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分先把多项式分解因式,再进行约分.4 4p14p14 例例 3 3 是应用题,题意也比较容易理解,式子也比较容易列出是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知来,但要注意根据问题的实际意义可

24、知 a 1,a 1,因此因此(a-1)2=a2-2a+1 a2-(a-1)2=a2-2a+1 a2-2+1,2+1,即即(a-1)2(a-1)2 a2-1.a2-1.这一点要给学生讲清楚,才能分析清楚这一点要给学生讲清楚,才能分析清楚“丰收丰收 2 2 号号”单位面积产量高单位面积产量高.或用求差法比较两代数式的大小或用求差法比较两代数式的大小四、课堂引入四、课堂引入1.1.出示出示 p13p13 本节的引入的问题本节的引入的问题 1 1 求容积的高求容积的高,问题,问题 2 2 求大拖拉机的求大拖拉机的工作效率是小拖拉机的工作效率的工作效率是小拖拉机的工作效率的 倍倍.引入引入 从上面的问题

25、可知,有时需要分式运算的乘除从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论本节我们就讨论数量关系需要进行分式的乘除运算数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比我们先从分数的乘除入手,类比出分式的乘除法法则出分式的乘除法法则.1 1p14p14观察观察 从上面的算式可以看到分式的乘除法法则从上面的算式可以看到分式的乘除法法则.3 3 提问提问 p14 p14思考思考 类比分数的乘除法法则,你能说出分式的乘除法类比分数的乘除法法则,你能说出分式的乘除法法则?法则?类似分数的乘除法法则得到分式的乘除法法则的结论类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解

26、五、例题讲解p14p14 例例 1.1.分析分析 这道例题就是直接应用分式的乘除法法则进行运算这道例题就是直接应用分式的乘除法法则进行运算.应该注意的应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果判断运算符号,在计算结果.p15p15 例例 2.2.分析分析 这道例题的分式的分子、分母是多项式,应先把多项式分解因这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项结果的分母如果不是单一的多项式,而是多个多项式相乘是不

27、必把它们展开式相乘是不必把它们展开.p15p15 例例.六、随堂练习六、随堂练习计算计算1 1 2 2 3 34 4-8xy(5)(6)-8xy(5)(6)七、课后练习七、课后练习计算计算1 1 2 2 3 34 4 5 5 6 6八、答案:八、答案:六、六、1 1abab 2 2 3 3 4 4-20 x2-20 x2 5 56 6七、七、1 1 2 2 3 3 4 45 5 6 616162 21 1 分式的乘除分式的乘除(二二)一、教学目标:熟练地进行分式乘除法的混合运算一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点二、重点、难点1 1重点:熟练地进行分式乘除法的混合运算重

28、点:熟练地进行分式乘除法的混合运算.2 2难点:熟练地进行分式乘除法的混合运算难点:熟练地进行分式乘除法的混合运算.3 3认知难点与突破方法:认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,到达熟练地进行分式乘除法的混利用上节课分式乘法运算的基础,到达熟练地进行分式乘除法的混合运算的目的合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则做的题目作自我评价,关键是点拨运算符

29、号问题、变号法则.三、例、习题的意图分析三、例、习题的意图分析1 1 p17 p17 页例页例 4 4 是分式乘除法的混合运算是分式乘除法的混合运算.分式乘除法的混合运算先分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材教材 p17p17 例例 4 4 只把运算统一乘法,而没有把只把运算统一乘法,而没有把 25x2-925x2-9 分解因式分解因式,就得就得出了最后的结果,教师在见解是不要跳步

30、太快,以免学习有困难的出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点学生理解不了,造成新的疑点.2 2,p17 p17 页例页例 4 4 中没有涉及到符号问题,可运算符号问题、变号法则中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入四、课堂引入计算计算1 1(2)(2)五、例题讲解五、例题讲解p17p17 分析分析 是分式乘除法的混合运算是分式乘除法的混合运算.分式乘除法的混合运算先统一成为分式乘除法的混合运算先统一成为乘法运算,再把分子、分

31、母中能因式分解的多项式分解因式,最后乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的进行约分,注意最后的计算结果要是最简的.补充补充(1)(1)=(=(先把除法统一成乘法运算先把除法统一成乘法运算)=判断运算的符号判断运算的符号=约分到最简分式约分到最简分式(2)(2)=(=(先把除法统一成乘法运算先把除法统一成乘法运算)=(=(分子、分母中的多项式分解因式分子、分母中的多项式分解因式)=六、随堂练习六、随堂练习计算计算(1)(1)2 23 3 4 4七、课后练习七、课后练习计算计算(1)(2)(1)(2)(3)(4)(3)(4)八、答案:八、答

32、案:六六.1 1 2 2 3 3 4 4-y-y七七.(1)(2).(1)(2)3 3 4 416162 21 1 分式的乘除分式的乘除(三三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算运算.二、重点、难点二、重点、难点1 1重点:熟练地进行分式乘方的运算重点:熟练地进行分式乘方的运算.2 2难点:熟练地进行分式乘、除、乘方的混合运算难点:熟练地进行分式乘、除、乘方的混合运算.3 3认知难点与突破方法认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,讲解分式乘方的运算法则之前,根据乘方的意

33、义和分式乘法的法则,计算计算=,=,顺其自然地推导可得:顺其自然地推导可得:=,即,即=.=.n n 为正整数为正整数归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.三、例、习题的意图分析三、例、习题的意图分析1 1 p17 p17 例例 5 5 第第1 1题是分式的乘方运算,它与整式的乘方一样应题是分式的乘方运算,它与整式的乘方一样应先判先判2 2题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除先做乘方,再做乘除.2 2教材教材 p17p17 例例 5 5

34、中象第中象第1 12 2题这样的分式的乘除与乘方的混题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点这个难点.四、课堂引入四、课堂引入计算以下各题:计算以下各题:1 1=(2)=(2)=3 3=提问提问 由以上计算的结果你能推出由以上计算的结果你能推出 n n 为正整数的结果吗?为正整数的结果吗?五、例题讲解五、例题

35、讲解p17p17 分析分析 第第1 12 2题是分式的乘除与乘方的混合运算,应对学生强题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除调运算顺序:先做乘方,再做乘除.六、随堂练习六、随堂练习1 1判断以下各式是否成立,并改正判断以下各式是否成立,并改正.1 1=2 2=3 3=4 4=2 2计算计算(1)(1)2 2 3 34 4 5)5)(6)(6)七、课后练习七、课后练习计算计算(1)(2)(1)(2)(3)(4)(3)(4)八、答案:八、答案:六、六、1.1.1 1不成立,不成立,=2 2不成立,不成立,3 3不成立,不成立,=4 4不成立,不成立,=2.2.1

36、1 2 2 3 3 4 4(5)(6)(5)(6)七、七、(1)(2)(1)(2)3 3 4 4=16162 22 2 分式的加减一分式的加减一一、教学目标:一、教学目标:1 1熟练地进行同分母的分式加减法的运算熟练地进行同分母的分式加减法的运算.2 2会把异分母的分式通分,转化成同分母的分式相加减会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点二、重点、难点1 1重点:熟练地进行异分母的分式加减法的运算重点:熟练地进行异分母的分式加减法的运算.2 2难点:熟练地进行异分母的分式加减法的运算难点:熟练地进行异分母的分式加减法的运算.3 3认知难点与突破方法认知难点与突破方法进行异

37、分母的分式加减法的运算是难点,异分母的分式加减法的运进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算算,必须转化为同分母的分式加减法,然后按同分母的分式加减法必须转化为同分母的分式加减法,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:的最简公分母,确定最简公分母的一般步骤:1 1取各分母系数的取各分母系数的最小公倍数;最小公倍数;2 2所出现的字母所出现的字母(或含字母的式子或含字母的式子)为底的幂的因式为底的幂的因式都要取;都要取;3 3相同字母相

38、同字母(或含字母的式子或含字母的式子)的幂的因式取指数最大的的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:异分母的分式加减法的一般步骤:1 1通分,将异分母的分式化成通分,将异分母的分式化成同分母的分式;同分母的分式;2 2写成写成“分母不便,分子相加减分母不便,分子相加减”的形式;的形式;3 3分子去括号,合并同类项;分子去括号,合并同类项;4 4分子、分母约分,将结果化成最简分子、分母约分,将结果化成最

39、简分式或整式分式或整式.三、例、习题的意图分析三、例、习题的意图分析1 1 p18 p18 问题问题 3 3 是一个工程问题,题意比较简单,只是用字母是一个工程问题,题意比较简单,只是用字母 n n 天来天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为间可表示为 n+3n+3 天,两队共同工作一天完成这项工程的天,两队共同工作一天完成这项工程的.这样引出分这样引出分式的加减法的实际背景,问题式的加减法的实际背景,问题 4 4 的目的与问题的目的与问题 3 3 一样,从上面两个一样,从上面两个问题可知,在讨论实际问

40、题的数量关系时,需要进行分式的加减法问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算运算.2 2 p19 p19观察观察 是为了让学生回忆分数的加减法法则,类比分数的加是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则分式的加减法法则.1 1题是同分母的分式减法的运算,第二个分式的分子式个单项式,题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的不涉及到分子变号的问题,比较简单,所以要补充分

41、子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;例题,教师要强调分子相减时第二个多项式注意变号;第第2 2题是异分母的分式加法的运算,最简公分母就是两个分母的题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型乘积,没有涉及分母要因式分解的题型.例例 6 6 的练习的题量明显不足,的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,稳固分题型也过于简单,教师应适当补充一些题,以供学生练习,稳固分式的加减法法则式的加减法法则.4 4p21p21 例例 7 7 是一道物理的电路题,学生首先要有并联电路总电阻是一道物理的电路题,学生

42、首先要有并联电路总电阻r r 与各支路电阻与各支路电阻 r1,r2,rnr1,r2,rn的关系为的关系为.假设知道这个公式,就比较假设知道这个公式,就比较容易地用含有容易地用含有 r1r1 的式子表示的式子表示 r2r2,列出,列出,下面的计算就是异分母的分,下面的计算就是异分母的分式加法的运算了,得到式加法的运算了,得到,再利用倒数的概念得到,再利用倒数的概念得到 r r 的结果的结果.这道题的这道题的数学计算并不难,但是物理的知识假设不熟悉,就为数学计算设置数学计算并不难,但是物理的知识假设不熟悉,就为数学计算设置了难点了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌鉴于以上分

43、析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例可以考虑是否放在例 8 8 之后讲之后讲.四、课堂堂引入四、课堂堂引入1.1.出示出示 p18p18 问题问题 3 3、问题、问题 4 4,教师引导学生列出答案,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算进行分式的加减法运算.2 2下面我们先观察分数的加减法运算,请你说出分数的加减法运算下面我们先观察分数的

44、加减法运算,请你说出分数的加减法运算的法则吗?的法则吗?3.3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?法法则?4 4请同学们说出请同学们说出 的最简公分母是什么?你能说出最简公分母确实定的最简公分母是什么?你能说出最简公分母确实定方法吗?方法吗?五、例题讲解五、例题讲解p20p20 分析分析 第第1 1题是同分母的分式减法的运算,分母不变,只把分子题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个

45、多项式要变号的问题,比较简单;第第二个多项式要变号的问题,比较简单;第2 2题是异分母的分式题是异分母的分式加法的运算,最简公分母就是两个分母的乘积加法的运算,最简公分母就是两个分母的乘积.补充补充1 1 分析分析 第第1 1题是同分母的分式加减法的运算,强调分子为多项式题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式成最简分式.解:解:=(2)(2)分析分析 第第2 2题是异分母的分式加减法的运算,先把分母进行因式题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母分解,再确定最简公分母,进行通分,结果要化为最简分式进行通分,结果要化为最简分式.解:解:=六、随堂练习六、随堂练习计算计算(1)(1)2 23 3 4 4七、课后练习七、课后练习计算计算(1)(2)(1)(2)(3)(4)(3)(4)八、答案:八、答案:四四.1 1 2 2 3 3 4 4五五.(1)(2).(1)(2)3 31 1 4 4文章来源文章来源mm 相关教案相关教案:没有相关教案没有相关教案1 1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁