《选修1-2第二章推理与证明讲义(7页).doc》由会员分享,可在线阅读,更多相关《选修1-2第二章推理与证明讲义(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-选修1-2第二章推理与证明讲义-第 7 页第二章推理与证明讲义2.1合情推理与演绎推理学习目标:1了解合情推理的含义,能利用归纳和类比进行简单的推理;2了解演绎推理的含义,掌握演绎推理的基本模式,能利用“三段论”进行简单的推理.重点:用归纳和类比进行推理,做出猜想;用“三段论”证明问题.难点:用归纳和类比进行合情推理,做出猜想。学习策略:合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势合情推理中的归纳、类比都是具有创造性的或然推理.不论是由大量的实例,经过分析、概括、发现规律的归纳,还是由两系统的已知属性,通过比较、联想而发现未知属性的类比,它们的共同点是,结论往往超
2、出前提所控制的范围,所以它们是“开拓型”或“发散型”的思维方法.也正因为结论超出了前提的管辖范围,前提也就无力保证结论必真,所以归纳类比都是或然性推理.演绎推理所得的结论完全蕴含于前提之中,所以它是“封闭型”或“收敛型”的思维方法.只要前提真实,逻辑形式正确,结论必然是真实的.知识要点梳理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察
3、、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。(2)一般模式:部分整体,个体一般(3)一般步骤:通过观察个别情况发现某些相同性质;从已知的相同的性质中猜想出一个明确表述的一般性命题;检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想; 一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部
4、分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的. 2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:找出两类对象之间的相似性或一致性;用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某
5、些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。知识点三:演绎推理(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理. 简言之,演绎推理是由一般到特殊的推理(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式 大前提已知的一般原理; 小前提所研究的特殊情况; 结论根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质(4)
6、演绎推理的结论一定正确演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。规律方法指导合情推理与演绎推理的区别与联系(1)从推理模式看:归纳推理是由特殊到一般的推理类比推理是由特殊到特殊的推理演绎推理是由一般到特殊的推理(2)从推理的结论看:合情推理所得的结论不一定正确,有待证明。演绎推理所得的结论一定正确。(3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情
7、推理的正确性,合情推理可以为演绎推理提供方向和思路.经典例题透析类型一:归纳推理1用推理的形式表示数列的前项和的归纳过程.举一反三:【变式1】用推理的形式表示等差数列1,3,5,(21),的前项和的归纳过程.【变式2】设,计算的值,同时归纳结果所具有的性质,并用验证猜想的结论是否正确.2平面内的1条直线把平面分成2部分,2条相交直线把平面分成4部分,3条相交但不共点的直线把平面分成7部分,n条彼此相交而无三条共点的直线,把平面分成多少部分?举一反三:【变式1】图(a)、(b)、(c)、(d)为四个平面图形 (1)数一数,每个平面图各有多少个顶点?多少条边?它们将平面各分成了多少个区域?(2)推
8、断一个平面图形的顶点数,边数,区域数之间的关系.类型二:类比推理3在三角形中有下面的性质:(1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半,且平行于第三边;(3)三角形的三条内角平分线交于一点,且这个点是三角形的内心;(4)三角形的面积,(为三角形的三边长,为三角形的内切圆半径)请类比写出四面体的有关性质类型三:演绎推理4已知:在空间四边形中,、分别为、的中点,用三段论证明:平面例4 变式2举一反三:【变式1】有一位同学利用三段论证明了这样一个问题:证明:因为所有边长都相等的凸多边形是正多边形,大前提而菱形是所有边长都相等的凸多边形,小前提所以菱形是正多边形.结论(1)上
9、面的推理形式正确吗?(2)推理的结论正确吗?为什么?【变式2】如图2-1-8所示,D,E,F分别是BC,CA,AB上的点,BFD=A,DEBA,求证:ED=AF.2.2直接证明与间接证明目标认知学习目标:1结合已经学过的数学实例,了解直接证明的两种基本方法:综合法和分析法,了解间接证明的一种基本方法:反证法;2了解综合法、分析法和反证法的思考过程、特点.重点:根据问题的特点,结合综合法、分析法和反证法的思考过程、特点,选择适当的证明方法或把不同的证明方法结合使用.难点:根据问题的特点,选择适当的证明方法或把不同的证明方法结合使用.学习策略分析法和综合法在证明方法中都占有重要地位,是解决数学问题
10、的重要思想方法。当所证命题的结论与所给条件间联系不明确,常常采用分析法证明;当所证的命题与相应定义、定理、公理有直接联系时,常常采用综合法证明.在解决问题时,常常把分析法和综合法结合起来使用。反证法解题的实质是否定结论导出矛盾,从而说明原结论正确。在否定结论时,其反面要找对、找全.它适合证明“存在性问题、唯一性问题”,带有“至少有一个”或“至多有一个”等字样的数学问题.知识要点梳理知识点一:直接证明1、综合法(1)定义:一般地,从命题的已知条件出发,利用公理、已知的定义及定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的的基本思路:执因索果综合法
11、又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.(3)综合法的思维框图:用表示已知条件,为定义、定理、公理等,表示所要证明的结论,则综合法可用框图表示为:(已知) (逐步推导结论成立的必要条件) (结论)2、分析法(1)定义:一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.(2)分析法的基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发
12、,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.(3)分析法的思维框图:用表示已知条件和已有的定义、公理、公式、定理等,所要证明的结论,则用分析法证明可用框图表示为:(结论) (逐步寻找使结论成立的充分条件) (已知)(4)分析法的格式:要证,只需证,只需证,因为成立,所以原不等式得证。知识点二:间接证明反证法(1)定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明
13、假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.(2)反证法的特点:反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(3)反证法的基本思路:“假设矛盾肯定” 分清命题的条件和结论做出与命题结论相矛盾的假设由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真(4)用反证法证明命题“若则”,它的
14、全部过程和逻辑根据可以表示为:(5)反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.规律方法指导1.用反证法证明数学命题的一般步骤:反设假设命题的结论不成立,即假定原命题的反面为真;归谬从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;存真由矛盾结果,断定反设不真,从而肯定原结论成立. 2.适合使用反证法的数学问题:要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.经典例题透析类型一:综合法1如图,设在四面体中,是的中点.求证:垂直于所在的平面. 举一反三:【变式1在锐角三角形ABC中,求证:类型二:分析法2求证:举一反三:【变式1】求证:类型三:反证法3。设函数在内都有,且恒成立,求证:对任意都有.举一反三:【变式1】已知:,求证