合催化剂K3PW12O40TiO2的制备表征与光催化性能研究毕业论文.doc

上传人:知****量 文档编号:43091482 上传时间:2022-09-16 格式:DOC 页数:16 大小:786KB
返回 下载 相关 举报
合催化剂K3PW12O40TiO2的制备表征与光催化性能研究毕业论文.doc_第1页
第1页 / 共16页
合催化剂K3PW12O40TiO2的制备表征与光催化性能研究毕业论文.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《合催化剂K3PW12O40TiO2的制备表征与光催化性能研究毕业论文.doc》由会员分享,可在线阅读,更多相关《合催化剂K3PW12O40TiO2的制备表征与光催化性能研究毕业论文.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 . 复合催化剂K3PW12O40/TiO2的制备、表征与光催化性能研究摘 要采用溶胶-凝胶法制备了K3PW12O40/TiO2复合催化剂,并用红外光谱、紫外-可见光谱、X射线衍射和扫描电镜等方法对所制备的催化剂进行了表征,结果表明催化剂中的二氧化钛为锐钛矿型,磷钨酸钾仍保持其Keggin结构的基本骨架,磷钨酸钾与二氧化钛之间存在着很强的相互作用。在紫外光照射下,以有机污染物罗丹明6G光催化降解目标,考察了催化剂的光催化活性。研究结果表明,K3PW12O40/TiO2复合物具有一定的催化效果。关键词:K3PW12O40/TiO2;光催化;罗丹明6GPreparation, Characteri

2、zation, and Photocatalytic Performance of KPW12O40/TiO2 Composite CatalystAbstractUsed the sol-gelatin legal system to prepare the K3PW12O40/TiO2 compound catalyst, and with methods and so on infrared spectrum, ultraviolet-obvious spectrum, X-ray diffraction and scanning electron microscope to the c

3、atalyst which prepared has carried on the attribute, finally indicated that in the catalyst the titanium dioxide for the anatase, the phospho-wolframic acid potassium still maintained its Keggin structure the basic skeleton, between the phospho-wolframic acid potassium and the titanium dioxide has t

4、he very strong interaction. Under ultraviolet ray illumination, by organic pollutant Rodin bright 6G photochemical catalysis degeneration goal, inspected the catalyst photochemical catalysis activeness. The findings indicated that the K3PW12O40/TiO2 compound has certain catalyzed effect.Keywords: K3

5、PW12O40/TiO2;Photocatalysis;Rhodamine 6G目 录第一章前言11.1TiO2的光降解作用与改性方法简介11.2杂多酸盐性能简介41.3TiO2复合杂多酸盐的研究现状41.4本文研究方法与对象51.5实验技术路线5第二章实验部分62.1 实验药品与仪器62.1.1实验药品62.1.2实验仪器62.2 实验步骤62.2.1TiO2与磷钨酸盐光催化剂的制备62.2.2光催化剂的FT-IR和XRD测试62.2.3催化剂光降解罗丹明6G实验与测试6第三章结果与讨论73.1催化剂的表征结果73.1.1K3PW12O40/TiO2光催化剂的FT-IR分析73.1.2XRD

6、分析83.1.3 SEM分析83.2 K3PW12O40/TiO2催化剂对罗丹明6G催化降解性能研究9结论10主要参考文献11致1313 / 16复合催化剂K3PW12O40/TiO2的制备、表征与光催化性能研究第一章 前 言有机染料废水中所含的染料,大多数是芳香化合物,80%以上是偶氮染料,且浓度小,量大,生物毒性大,不宜使用传统的生物降解法进行处理,因而成为工业废水处理的一大难题。1.1TiO2的光降解作用与改性方法简介光催化剂(包括TiO2、CdS、ZnO和MoO3等)能够利用太等能源,促进化学反应,消除污染物等1-2 ,具有广阔的应用前景。1972年,Fujishima A等3发现Ti

7、O2材料在氙灯照射下产生电动势,电解水生成H2,表明TiO2将光能转变为储存于H2中的化学能。TiO2化学性能稳定、对生物无毒、来源丰富、量子效率和催化效率高。目前,TiO2的研究领域主要包括太阳能电池材料、光敏材料和传感器等。TiO2也被应用在净水、抑菌、脱臭、除雾和去污等环保领域4 。TiO2光催化剂只能在能量高的紫外光照射下起催化作用,不能利用能量较低的可见光光能。通过改变TiO2晶体结构,使其禁带变窄,电子能吸收能量较低的可见光,发生跃迁激发。对TiO2的改性主要通过贵金属沉积、合成复合半导体材料和元素掺杂来实现。从最初金属掺杂到非金属掺杂,发展到共掺杂。元素掺杂就是制备过程中在TiO

8、2晶格掺杂微量金属元素Fe、Cr和V等或非金属N、C、S和F等,亦或两种不同元素掺入到TiO2晶格。以半导体氧化物(如TiO2)为催化剂的光催化技术以其不需要高温、可利用太阳能、能使有机污染物无选择性完全矿化和催化剂自身无毒无污染等优异特性被认为是目前最为理想的化学污染治理方法。但是就TiO2光催化剂而言,它只能吸收太的紫外部分,目前量子效率只有4%左右。因此,开发新型的高效光催化剂或通过各种手段改善TiO2半导体的性能以提高光催化剂的效率是当前光催化基础研究的焦点。1.1.1TiO2的光催化反应机理TiO2光催化性能由其半导体结构所决定。根据能带理论,半导体材料能带结构由低能价带和高能导带构

9、成,价带和导带间存在禁带。TiO2是半导体,其禁带宽度为3.2 eV,只有在波长小于385nm紫外光照射下,价带电子吸收光子能量,才能迁进入导带,形成电子-空穴对,光生电子和空穴对吸附在半导体表面的物种转移电荷,空穴夺取半导体颗粒表面被吸附物质或溶剂的电子,使不吸收光物质被活化并被氧化,电子受体接收电子被还原,通过这样不断电荷转移完成多相催化过程。而日光中紫外光能量仅占4%,可见光能量约占43%,因此, TiO2不能充分利用日光中可见光能。TiO2晶体主要有金红石和锐钛矿两种晶型5。锐钛矿相TiO2禁带宽度为3.2eV,根据吸收波长和禁带宽度可知,TiO2发生光催化反应所需最大波长为385nm

10、。当光波长小于此值,辐射激发产生光生电子-空穴对,它们极易重新复合以热能或其他形式能散发。但当催化剂表面存在合适俘获剂或表面缺陷时,有效抑制电子-空穴对复合,因为复合前在催化剂表面已发生氧化还原反应,空穴作为氧化剂,电子作为还原剂。反应产生羟基自由基(OH)、超氧离子自由基(O2- )以与HO2自由基都具有很强氧化性,能直接把有机物氧化为CO2和H2O等无机小分子1。Anpom等4研究77K时丙炔加氢反应,利用电子自旋共振谱( ESR)证实体系中O存在,且观察到Ti3+与其他含氧自由基ESR信号。1.1.2TiO2的光催化掺杂处理a.过渡金属掺杂元素周期表的d区和f区元素离子具有较多可失或容纳

11、电子空穴,因此,TiO2金属掺杂多集中在d区和f区,其中以过渡金属和稀土元素掺杂研究较多2。过渡金属以Fe掺杂研究最多,通过表征手段和与工业TiO2产品P-25与纯TiO2 降解有机物的光催化性能比较,得出Fe离子掺杂物具有最佳光催化性能。通过一定条件处理的掺杂产物还具有铁磁性能。研究表明,许多过渡金属掺杂均能使吸收波长发生红移,对可见光产生响应。吴树新等6利用Cr、Mn、Fe、Co、Ni和Cu六种过渡金属分别掺杂TiO2光催化剂,发现改善光催化性能程度按Cr、Co、Ni、Fe、Mn和Cu递增。另外,过渡金属掺杂催化剂晶型有效降低禁带宽度,增加电子-空穴对复合,从而增强光催化效果。 利用稀土金

12、属对TiO2掺杂,也取得较好效果。XuWa等7采用溶胶-凝胶法对TiO2进行La3+、Ce3+、Er3+ 、Pr3+ 、Gd3+、Nd3+和Sm3+等掺杂,通过表征和对亚硝酸盐降解得出,合适掺杂量有效延长光吸收波长,稀土金属掺杂具有良好光催化效果,稀土金属离子有利于亚硝酸盐吸附在催化剂表面,抑制电子-空穴对复合,从而增强界面电子传递速率。从掺杂物对亚硝酸盐降解性能测试得出, Gd3+掺杂催化效果最好,其最佳掺杂质量分数为0.5%。与工业P-25催化效果比较发现, Gd3+掺杂物在较长时间光辐射下几乎完全降解亚硝酸盐,而工业P-25降解20min后达到恒定值。Burnsa等对不同条件下Nd3+掺

13、杂对TiO2晶格影响分析,明确指出,影响相变晶形和催化活性最大掺杂摩尔分数为0.1%。Xie YB等采用共沉淀-胶溶法在70低温、常压和pH=1.5的条件下,制备Nd3+ -TiO2掺杂物,完全摆脱传统高温焙烧改变晶型方式, Nd3+ -TiO2催化剂由于Nd3+对电子俘获影响,与工业P-25相比,具有更好吸附性能和光催化性能。b.N掺杂Asahir等8用N替换少量晶格氧(0.75%)带来可见光活性,首次制备置换氧位TiNx掺杂态和TiO2带隙匹配构建可见光激发催化剂。采用溅射方法制备Ti2-xNx 薄膜,并从理论上计算出N掺杂能带结构,认为N原子取代TiO2晶格中氧原子产生可见光敏化活性。提

14、出产生可见光催化活性三条件:(1)掺杂能够在TiO2带隙间产生一个能吸收可见光的状态;(2)导带能级最小值,包括次级杂质能态,应该和TiO2导带能级最小值一样或者比水还原能级要高;(3) 带隙状态应该和TiO2能带状态充分重叠,以保证光生载流子在其生命周期能经过TiO2介质传输到表面活性位进行光催化反应。不同方法制备N掺杂粉体或薄膜均表明,掺N改变原有TiO2能带结构,均能不同程度对可见光敏化产生响应,带来可见光催化活性9。其中Diwaldo等提出通过掺入氮化物形成取代N,不能在低于金红石相TiO2带隙(3.0eV)条件下降低光化学所需初始能量。Kasaharaa等和Nukumizuk等10则

15、认为LaTiO2N钙钛矿结构是产生光催化活性关键。c.S掺杂S掺杂可能产生置换晶格金属离子Ti4+而形成S4+或者S6+11掺杂。通过S掺杂TiO2降解亚甲基蓝得出,与纯TiO2相比,S掺杂TiO2紫外光激发活性显著降低,显现阳离子掺杂特征。研究指出12,S掺杂也能够置换晶格氧,表现为S2-,氩离子刻蚀手段证实不论表面还是体相均产生TiS2掺杂态,性能测试实验也表明提高可见光激发活性。Takeshitak等13用不同方法制备S置换氧和取代氧的Ti4+掺杂物,在中红外区用瞬时吸收测量解释两者在可见光下催化性能异同。d.C掺杂SHAHEDUMK等14通过气焰高温加热金属钛制备CM-n-TiO2,发

16、现明显改变TiO2对可见光吸收特性。随后研究者用不同方法制备C-TiO2,证实C原子取代TiO2中氧原子。性能测试发现吸收光谱发生红移,说明催化效果明显优于纯TiO2。Irieh15等在可见光下降解2-丙醇,结果表明,C-TiO2量子效率为0.2%,低于所研究过Ti2-xNx。分析原因可能为:(1)C掺杂可能使带隙变窄,价带高能级向上移动,从而使氧化能力降低,而N掺杂则不发生这种情况;(2) 在C-TiO2中C掺杂量0.32%不适中,不能产生较高光催化活性。e.卤素掺杂YuJC等16在NF4-H2O混合液中水解四异醇钛,制备高催化活性的纳米晶催化剂。实验表明, F掺杂提高锐钛矿结晶度,且随F掺

17、杂量增大有效抑制板钛矿生成和阻止锐钛矿向金红石相转变。空气中降解丙酮发现,该催化剂催化活性超过P-25,且带隙宽度明显降低,在紫外-可见光围表现强烈吸收性。分析催化活性增强的可能原因:(1)催化剂比表面积增大,结晶度变小;(2)F掺杂使Ti4+通过电荷补偿转变为Ti3+,而Ti3+表面态捕获光生电子转移至O2吸附在TiO2表面,减少电子-空穴复合, 提高光催化活性。众多卤素掺杂实验17发现,卤素掺杂均能不同程度提高可见光激发催化活性。WangJS18等深入分析光催化活性提高。原因:(1)除带隙变窄外,还可能是Ti3+和F掺杂产生阴离子空穴,导致较高可见光吸收能力;(2)F掺杂有效增加电子活动能

18、力,使SrTiO3具有较大比表面积和较小粒径。Luohm19等认为混晶有利于减小电子-空穴对复合。文献20指出,金属掺杂增加电子-空穴复合位,降低紫外区域光催化活性。与金属和非金属掺杂相比,共掺杂明显降低TiO2 禁带宽度,减小电子-空穴复合,根本上提高催化剂光催化性能。目前,TiO2掺杂研究存在以下问题:(1)光催化或能量转化效率仍然较低;(2)掺杂改性光催化反应机理仍存在分歧;(3)TiO2以其稳定、廉价和对环境友好而备受关注,然而这样人为制造晶格缺陷对催化剂稳定性是否影响,目前还不很清楚;(4)催化剂使用过程中失活与再生69等走向实用化。这些具体问题都极大限制TiO2掺杂规模化生产和应用

19、,所以TiO2掺杂仍待进一步深入研究21,22。1.2 杂多酸盐性能简介杂多酸是一类含氧桥的多核无机高分子化合物,是由中心原子(P、Si、A s、Ge 等) 和配位原子(如Mo、V、W 等) 以一定结构通过氧原子配位桥联而成的含氧多元酸总称23。近年来的研究发现,钼、钨等元素的杂多酸光照下具有光催化氧化作用。光催化氧化于1980 年末开始应用于环境污染控制领域,与传统水处理技术中的污染物的分离、浓缩以与相转移等为主的物理方法相比,具有明显的节能、高效、污染物降解彻底等优点24。罗丹明B是一种有代表的碱性染料,在染料的生产使用中,产生大量碱度高、色泽深、臭味大的废水对生态环境保护和饮用水造成相当

20、大的危害。随着人类对环境保护的日益重视, 许多学者研究用TiO2催化光解处理染料废水,但为了克服纳米TiO2回收和利用比较难的问题, 研究者们研究新负载杂多酸催化剂。如杂多酸有效地负载在多孔固体载体上,可提高比表积利于回收,提高催化活性25。1.3TiO2复合杂多酸盐的研究现状杂多酸盐(POM)光催化化学的研究始于20世纪80年代初期,目前进行的研究表明,POM能够高效氧化分解有机污染物26。但其比表面积小(110m2/g),易溶于极性溶剂的缺点,则限制了POM的实际应用。催化剂表面的大小对反应活性的影响是相当大的,同等的条件下表面越大一般反应活性也越高。因此在实际的应用中,常常需要将杂多酸(

21、盐) 负载到合适的载体上,以提高表面积。许多研究工作表明,负载杂多酸的催化性能与载体的种类、负载量以与处理的温度有关。Al2O3、MgO等碱性载体容易使杂多酸分解所以一般不宜做负载杂多酸的载体,用于负载杂多酸的主要是中性和酸性载体,如:SiO2、活性炭、TiO2、离子交换树脂、大孔径的MCM-41分子筛、层柱材料等。本课题以磷钨酸水溶液湿法浸渍表面修饰TiO2制备了磷钨酸/二氧化钛复合催化剂,经各种表征手段证明该复合催化剂的比表面积较单纯的HPW有很大提高,但随负载量的增加而减少。在一定温度围焙烧和光照均不会影响HPW的结构。以甲醛或丙酮的模拟污染空气研究其在复合光催化剂作用下的光催化降解行为

22、,结果表明,修饰剂磷钨酸含量为21.9%时,光催化降解甲醛和丙酮的效果均最佳;该反应随修饰剂磷钨酸含量的增加,甲醛的部分还原产物甲醇含量增加,说明HPW与TiO2产生了明显的协同作用,改变了TiO2光催化反应历程。合成了PWn/TiO2(n = 11 ,12) 两种复合催化剂27,对其进行了各种表征,并将其用于甲醛的光催化氧化降解实验。结果表明,PW11/TiO2复合催化剂中的钛醇基团可在PW11的缺位位置发生化学键合作用,导致复合体系中结构的变化,光催化活性较低;PW12/TiO2复合催化体系中不仅保持了PW12完整的Keggin结构,而且经350焙烧处理后PW12与TiO2形成载流子的有效

23、迁移,使得复合催化剂具有较高的光催化活性,明显优于纯TiO2。两种复合催化剂对甲醛的光催化降解反应均遵循L-H机理,符合一级动力学方程。战辉等28用溶胶-凝胶法制备了磷钨系杂多酸复合的TiO2纳米粒子,利用透射电子显微镜、紫外-可见吸收光谱和傅立叶转换红外光谱(FT-IR)对HPA/TiO2的复合纳米粒子的形貌、结构和粒径进行了表征,结果表明制备的复合TiO2纳米粒子为近球形,粒径为1215 nm ,表现出量子尺寸效应,杂多酸阴离子保持原有的Keggin结构;并且对复合TiO2纳米粒子的结构进行了理论探讨,还对杂多酸复合TiO2纳米粒子降解苯酚的光催化活性进行了研究,在适当的条件下苯酚的降解率

24、可达60%,而单纯的TiO2只有35%,表明复合的TiO2纳米粒子具有更高的光催化活性。文中还给出了可能的反应机理,可能是在紫外光的照射、有氧的条件下,有机分子被杂多酸阴离子的晶格氧(O2-) 所氧化,消耗了的晶格氧由分子氧进行补充。由于Keggin型杂多酸阴离子结构的特殊性,具有很强的接受电子的能力,当TiO2纳米粒子表面修饰杂多酸阴离子后,导致粒子吸收光子产生的电子被杂多酸阴离子所捕获,从而降低电子- 空穴对的重新复合的几率,进而提高TiO2纳米粒子光催化的效率。1.4本文研究思路本文采用溶胶-凝胶法制备K3PW12O40/TiO2复合催化剂,并运用红外光谱、紫外-可见光谱和X射线衍射等对

25、催化剂进行表征。在紫外光照射下,以有机污染物罗丹明6G光催化降解目标,考察催化剂的光催化活性。1.5 实验技术路线K3PW12O40/TiO2光降解罗丹明6GTiO2溶胶前驱体的制备K3PW12O40/TiO2 光催化剂的制备进行FT-IR 表征进行UV表征进行FT-IRXRD表征第二章 实验部分2.1 实验药品与仪器2.1.1实验药品钛酸四丁酯(AR,98%,市展望化工试剂);过氧化氢(H2O2,30%,中外合资远大过氧化物);磷钨酸(振兴试剂厂);罗丹明6G(配制浓度为:1.010-6mol/L,试剂五厂);氯化钾( AR 国药集团化学试剂);以上试剂均为分析纯。二次蒸馏水:采用1810-

26、B石英自动双重纯水蒸馏器水纯化系统制备。2.1.2实验仪器磁力加热搅拌器,金坛市金城国胜实验仪器厂;超声波清洗器,SB5200 仪器厂;高速离心机,Anke TGL-16C;傅立叶变换红外光谱仪,NEXUS-870,Nicolet Instrument Corperation, USA;紫外-可见分光光度计(普析通用仪器XX公司),扫描围:200800nm,采用间隔:1nm,扫描速度:中速,光度模式:Abs;X-射线衍射仪,Y-4Q,射线仪器工业公司;扫描电子显微镜,S-4800,日本日立公司; 电子天平,AB140-N,Mettler-Toledo Group,Shanghai;马弗炉,电分

27、析仪器厂。2.2实验步骤2.2.1TiO2与磷钨酸钾复合光催化剂的制备a.在H2O中加一定量的浓HNO3配成pH=1的溶液A,将约15滴的钛酸四丁酯滴加入到 A 中,边加边搅拌,搅拌至澄清液。b.在上述澄清液中加入0.9993g的磷钨酸(H3PW12O40),充分搅拌混合。c.将0.1006g的氯化钾(KCl)溶液滴加到上述溶液中,水浴加热搅拌8小时后静置1h,于450烘箱烘烤3h后取出,得到TiO2与磷钨酸钾复合光催化剂。2.2.2催化剂光降解罗丹明6G实验与测试称取1克K3PW12O40/TiO2光催化剂,将其加入2mlH2O2和40ml 1.010-6mol/L罗丹明6G,在150W紫外

28、灯照射下,灯距10厘米,每隔5分钟取一次样,进行紫外-可见光谱测试,来探究其光催化效果。第三章 结果与讨论3.1催化剂的表征结果3.1.1FT-IR表征图1中,a表示TiO2的FT-IR谱,1624cm-1为吸附水的O-H弯曲振动特征峰,表明TiO2中有表面羟基存在;1389cm-1处出现的弱峰为Ti-OH的特征吸收峰;724cm-1出现的宽峰主要是Ti-O键伸缩振动。在760-600cm-1处的Ti-O键伸缩振动宽峰,会因为热处理温度的升高,TiO2颗粒尺寸变大而变成一个宽而平的吸收带;热处理温度继续升高时,TiO2发生结构相变,出现金红石相时,Ti-O键伸缩振动峰会锐化,并出现分裂。因此,

29、由图可知纯TiO2催化剂为锐钛矿型。b表示K3PW12O40的FT-IR谱,K3PW12O40在指纹区1100-700cm-1有Keggin结构多金属氧酸盐的4个特征吸收峰,分别为1078cm-1 (P-O-W),987cm-1 (W=O),885cm-1 (W-O-W)和812cm-1(W-O-W),表明K3PW12O40具有Keggin结构。1620cm-1为吸附水的O-H弯曲振动特征峰,这两个弱峰说明K3PW12O40含水量少,与H3PW12O40相比,其不易吸水。c表示K3PW12O40/TiO2的FT-IR谱, 从图中可以看出,1635.8cm-1的O-H弯曲振动特征峰强于a和b。表

30、明K3PW12O40与TiO2复合后发生了相互作用,使复合催化剂K3PW12O40/TiO2中有较多的表面羟基存在。与b相比较,在1384cm-1处多出一峰,这是二氧化钛中钛的与磷钨酸钾中的氧形成的Ti-O键。在1076cm-1,987cm-1,887cm-1,813cm-1处出现了K3PW12O40的Keggin结构多金属氧酸盐的4个特征峰,表明复合后K3PW12O40的Keggin结构未被破坏。图1.K3PW12O40/TiO2、K3PW12O40和TiO2的FT-IR复合谱图3.1.2 XRD表征图2为450焙烧下的K3PW12O40/TiO2的XRD图,*代表K3PW12O40特征峰,

31、 代表锐钛矿型TiO2特征峰。分别与H3PW12O40(JCPDS,50-0657)和TiO2(JCPDS,79-1936)的粉末衍射卡相对照,图中代表 TiO2六个衍射峰,分别为25.2,30.47,36.02,47.8,55.43,62.57,分别对应于脱钛矿相TiO2的(101)、(211)、(004)、(200)、(211)、和(204)晶面。图中*代表的K3PW12O40七个衍射峰,分别为10.55,15.08,18.47,21.38,24.9,26.33,37.0, 分别对应于H3PW12O40的(110)、(200)、(211)、(220)、(310)、(222)和(510)晶面

32、。图2:K3PW12O40/TiO2的XRD谱图*代表K3PW12O40特征峰,代表钛矿型TiO23.1.3 SEM表征在图3中,K3PW12O40/TiO2催化剂的粒径较小,催化剂上的微粒具有丰富的微细表面和无穷嵌套的精细结构,这使得催化剂中活性组分的分散度较大,具有较大的比表面积,因而具有较好的光催化活性。图3. K3PW12O40/TiO2的SEM谱图3.2 光降解实验的紫外-可见吸收光谱分析为了研究K3PW12O40/TiO2对罗丹明6G的脱色降解作用,用紫外可见分光光度计来检测罗丹明6G特征吸收峰强度随时间变化的规律,罗丹明6G的特征吸收峰在526nm处,图4是K3PW12O40/T

33、iO2作用下随紫外照射而脱色降解过程的紫外-可见光谱图。紫外光可以使罗丹明6G结构降解,但这是一个漫长的过程。在同时伴有K3PW12O40/TiO2条件下,它的降解过程就大大的加快了,图2中的曲线从上而下是时间间隔为5min,当反应进行30min后,罗丹明6G特征吸收峰强度已经消失了,在紫外光照射下, K3PW12O40/TiO2的催化是明显。图5是罗丹明6G吸收强度随时间变化的规律图。图4. K3PW12O40/TiO2光降解罗丹明6G的UV-Vis光谱图图5. 罗丹明6G吸收强度随时间变化图结 论采用溶胶-凝胶法制备了K3PW12O40/TiO2光催化剂,经分析测试表明,二氧化钛为锐钛矿型

34、,磷钨酸仍保持其Keggin结构的基本骨架,二氧化钛与磷钨酸钾二者之间存在着较强的相互作用。作为复合型光催化剂, 具有较好的光催化活性, 比单纯的TiO2具有更高的光催化活性, 对有色废水的降解取得了较满意的效果。在太条件下降解工业污染物, 具有操作简便, 且K3PW12O40/TiO2复合光催化剂可重复利用,具有适用围广泛等优点,有较好的潜在应用前景。主要参考文献1高濂,珊,青红.纳米氧化钛光催化材料与应用M.:化学工业,2005:260-285.2金龙,峰,何斌.光催化M.:华东理工大学,2004.3 Fujishima A, Honda K. Electrochemical photol

35、ysis of water at a semiconductor electrodeJ.Nature,1972,238:37-38.4 Anpo M, Shima T, Kodama S, et al.Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2:Size quantization effects and reaction intermediates J. JPhys Chem,1987,91: 4305-4310.5 Umebayashi T, Yamaki T, Yamamoto S, et a

36、l. Sulfur-doping of rutile-titanium dioxide by ionimp lantation: Photo-current spectroscopy and first-princip les band calculation studiesJ. JApplPhys,2003,93(9):5156-5160.6吴树新,马智,永宁等.掺杂纳米TiO2光催化性能的研究J.物理化学学报,2004,20(2):138-143.7 XuWa, Gao Y, Liu H Q. The preparation, character zization, and their p

37、hotocatalytic activities of rare-earth-doped TiO2 nanoparticlesJ.Journal of Catalysis,2002,207:151-157.8 Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxidesJ.Science,2001,293:269-271.9 Glaspell G, Manivannan A. Solgel synthesis and magnetic studies of

38、 titanium dioxide doped with 10%M (M=Fe,Mn and Ni) J.Journal of Cluster Science,2005,16 (4):501-513.10 Nukumizu K, Nunoshige J, Takata T, et al.Tinxoy Fz as a stable photocatalyst for water oxidation in visible light (570nm) J. Chem Lett,2003,32 (2):196-197.11 Umebayashi T, Yamaki T, Tanaka S, et al

39、. Visi TiO2J. Chem Lett,2003,32:330-331.12 Irie H, Watanabe Y, Hashimoto K. Nitrogen-con centration dependence on photocatalytic activity of TiO2-xnx powdersJ. JPhys Chem B,2003,107:5483-5486.13 Takeshita K, Yamakata A, Ishibashi T, et al.Transient IR absorp tion study of charge carriers photoge ner

40、ated in sulfur-doped TiO2 J. J Photochem Photobiol A:Chemistry,2006,177:269-275.14 Shahedum K, Mofareh A, William B, et al. Ef-ficient photochemicalwater sp litting by a chemically modi-fied TiO2J. Science,2002,297:224-225.15 Yu J C, Yu J G, How K, et al. Effects of Fz dopingon the photocatalytic ac

41、tivity and microstructures of nanocrys-talline TiO2 powdersJ. Chem Mater,2002,14:3808-3816.16 Choi W, Termin A, Hoffmanm R. The role of metalion opants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamicsJ. J Phys Chem, 1994,98:13669-13679.17 Zhang Z B

42、, Wang C C, Zakaria R, et al. Role of particle size in nanocrystalline TiO2 based photocatalystsJ. J Phys Chem B,1998,102:10871-10878.18 Borgarello E, Kiwi J, Gratzel M, et al. Visible lightinduced water cleavage in colloidal solutions of chromi umdoped titamium dioxide particlesJ. J Am Chem Soc,198

43、2,104 (11):2996-3002.19 Kato H, Kudo A. Visible light response and photocata lytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromiumJ. J Phys Chem B, 2002,106:5029-5034.20 Feid Q, Hudaya T, Adesina A A. Visible light acti vated titania perovskite photocatalysts: Charact

44、erisation and initial activity studiesJ. Catalysis Communications2005,6(4):253-259.21 Zheng Hong, Tang Hong Xiao, Wang Yi Zhong, et al.Progressin mechanism and kenitics of the heterogeneous phototcatalytic oxidation of organic contaminants of semiconductorsJ.Advances in Environmental Science,1996,4(

45、3):1-18.22越湘,王添辉,绍琴.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应J.物理化学学报, 2004,20(12):1434-1439.23 Guo Y, Wang Y, Hu C , et al. Microporous polyoxometalates Poms/ SiO2:Synthesis and photocatalytic degradation of aqueous organochlorine pesticidesJ . Chem Matter,2000,12(11) :3501-3508.24 Bret J S , Johnson A S. Surface

46、modification of mesoporous ,macroporous and amorphous silica with catalytically active polyoxometalate clustersJ .Inorg Chem ,2001,40:801-808.25 Mizuno N , Misono M. Heterogeneous CatalysisJ.Chem Rev,1998,98:199-217.26邓谦,吕晓萌.磷钨酸表面修饰TiO2光催化降解空气污染物J.中国环境科学,2005,25(3):375-379.27蔡铁军,吕晓萌.复合催化剂PWn/TiO2光催化

47、降解甲醛反应的研究J.环境科学学报,2005,25(5):618-622.28战辉,宇.磷钨系杂多酸复合TiO2纳米粒子的制备与光催化特性J.化工,2004,32(3):21-25.致 本论文是在导师安建教授和玉华教授的指导和关怀下完成的。导师对于论文选题给予了最大的理解和支持,对于我的生活也给予了很多帮助。他们扎实的理论功底、渊博的学识、精益求精的科学态度、敏捷的思维、勇于实践的精神给我留下了深刻的印象,使我受益匪浅,永远值得我学习。我愿借此机会向我的导师安建教授表示我最衷心的感。 特别感齐春霞师姐在实验上给予我的帮助,在论文的写作上指出我的不足,并提供宝贵的意见。感实验室的孔祥泰等老师,三先,马静等师兄师姐们在实验过程中给予的关怀和照顾。当然,想要感的人还有很多很多,恕我未能一一提与。再次向关心、支持和帮助过本论文工作的所有人致! 徐喆

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁