高中数学数列知识点总结(5页).doc

上传人:1595****071 文档编号:43090484 上传时间:2022-09-16 格式:DOC 页数:5 大小:269.50KB
返回 下载 相关 举报
高中数学数列知识点总结(5页).doc_第1页
第1页 / 共5页
高中数学数列知识点总结(5页).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《高中数学数列知识点总结(5页).doc》由会员分享,可在线阅读,更多相关《高中数学数列知识点总结(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-高中数学数列知识点总结-第 4 页1. 等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数的等差数列,有(7)项数为奇数的等差数列,有2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或.前项和:(要注意!)性质:是等比数列(

2、1)若,则(2)仍为等比数列,公比为.注意:由求时应注意什么?时,;时,.3求数列通项公式的常用方法(1)求差(商)法如:数列,求(2)叠乘法 如:数列中,求(3)等差型递推公式由,求,用迭加法练习数列中,求()(4)等比型递推公式(为常数,)可转化为等比数列,设令,是首项为为公比的等比数列(5)倒数法如:,求附:公式法、利用、累加法、累乘法.构造等差或等比或、待定系数法、对数变换法、迭代法、数学归纳法、换元法4. 求数列前n项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求(2)错位相减法若为等差数列,为等比数列,求数列(差比数

3、列)前项和,可由,求,其中为的公比. 如: 时,时,(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加. 相加练习已知,则 (附:a.用倒序相加法求数列的前n项和如果一个数列an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。b.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意

4、事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。c.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。d.用错位相减法求数列的前n项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列anbn中,an成等差数列,bn成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。e.用迭加法求数列的前n项和迭加法主要应用于数列an满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。f.用分组求和法求数列的前n项和所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。g.用构造法求数列的前n项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁