《线性连续系统的离散化精选PPT.ppt》由会员分享,可在线阅读,更多相关《线性连续系统的离散化精选PPT.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于线性连续系统的离散化第1页,讲稿共26张,创作于星期二目录目录(1/1)目目 录录q概述概述q3.1 线性定常连续系统状态方程的解线性定常连续系统状态方程的解q3.2 状态转移矩阵及其计算状态转移矩阵及其计算 q3.3 线性时变连续系统状态方程的解线性时变连续系统状态方程的解q3.4 线性定常连续系统的离散化线性定常连续系统的离散化q3.5 线性定常离散系统状态方程的解线性定常离散系统状态方程的解q3.6 Matlab问题问题q本章小结本章小结第2页,讲稿共26张,创作于星期二线性连续系统状态空间模型的离散化线性连续系统状态空间模型的离散化(1/5)3.4 线性连续系统状态空间模型的离散化
2、线性连续系统状态空间模型的离散化q离散系统的工作状态可以分为以下两种情况。整个系统工作于单一的离散状态。对于这种系统,其状态变量、输入变量和输出变量全部是离散量,如现在的全数字化设备、计算机集成制造系统等。系统工作在连续和离散两种状态的混合状态。对于这种系统,其状态变量、输入变量和输出变量既有连续时间型的模拟量,又有离散时间型的离散量,如连续被控对象的采样控制系统就属于这种情况。第3页,讲稿共26张,创作于星期二线性连续系统状态空间模型的离散化线性连续系统状态空间模型的离散化(2/5)对于第2种情况的系统,其状态方程既有一阶微分方程组又有一阶差分方程组。为了能对这种系统运用离散系统的分析方法和
3、设计方法,要求整个系统统一用离散状态方程来描述。v由此,提出了连续系统的离散化问题。在计算机仿真、计算机辅助设计中利用数字计算机分析求解连续系统的状态方程,或者进行计算机控制时,都会遇到离散化问题。第4页,讲稿共26张,创作于星期二线性连续系统状态空间模型的离散化线性连续系统状态空间模型的离散化(3/5)q图3-3所示为连续系统化为离散系统的系统框图。图图 3-3 连续系统离散化的实现连续系统离散化的实现第5页,讲稿共26张,创作于星期二线性连续系统状态空间模型的离散化线性连续系统状态空间模型的离散化(4/5)q线性连续系统的时间离散化问题的数学实质,就是在一定的采样方式和保持方式下,由系统的
4、连续状态空间模型来导出等价的离散状态空间模型,并建立起两者的各系数矩阵之间的关系式。q为使连续系统的离散化过程是一个等价变换过程,必须满足如下条件和假设。在离散化之后,系统在各采样时刻的状态变量、输入变量和输出变量的值保持不变。保持器为零阶的,即加到系统输入端的输入信号u(t)在采样周期内不变,且等于前一采样时刻的瞬时值,故有u(t)=u(kT)kTt(k+1)T 第6页,讲稿共26张,创作于星期二线性连续系统状态空间模型的离散化线性连续系统状态空间模型的离散化(5/5)采样周期T的选择满足申农(Shannon)采样定理,即采样频率2/T大于2倍的连续信号x(k)的上限频率。q满足上述条件和假
5、设,即可推导出连续系统的离散化的状态空间模型。下面分别针对线性定常连续系统线性定常连续系统和线性时变连续系统线性时变连续系统讨论离散化问题。第7页,讲稿共26张,创作于星期二线性定常连续系统的离散化线性定常连续系统的离散化(1/3)3.4.1 线性定常连续系统的离散化线性定常连续系统的离散化q本节主要研究线性定常连续系统状态空间模型的离散化,即研究如何基于采样将线性定常连续系统进行离散化,建立相应的线性定常离散系统的状态空间模型。q主要讨论的问题为两种离散化方法:精确法和近似法第8页,讲稿共26张,创作于星期二q线性定常连续系统状态空间模型的离散化,实际上是指在采样周期T下,将状态空间模型线性
6、定常连续系统的离散化线性定常连续系统的离散化(2/3)变换成离散系统的如下状态空间模型:由于离散化主要是对描述系统动态特性的状态方程而言,输出方程为静态的代数方程,其离散化后应保持不变,即C(T)=C D(T)=D离散化主要针对连续系统状态方程(A,B)如何通过采样周期T,变换成离散系统状态方程(G,H)。第9页,讲稿共26张,创作于星期二q在上述的条件和假设下,即可推导出连续系统离散化的状态空间模型。下面介绍两种离散化方法:精确法精确法、近似法近似法。线性定常连续系统的离散化线性定常连续系统的离散化(3/3)主要推荐?第10页,讲稿共26张,创作于星期二精确离散化方法精确离散化方法(1/4)
7、现在只考虑在采样时刻t=kT和t=(k+1)T时刻之间的状态响应,即对于上式,取t0=kT,t=(k+1)T,于是1.精确离散化方法精确离散化方法q所谓线性定常连续系统的状态方程的精确离散化方法,就是利用状态方程的求解公式以保证状态在采样时刻连续状态方程和离散化状态方程有相同的解来进行离散化。q连续系统的状态方程的求解公式如下:第11页,讲稿共26张,创作于星期二精确离散化方法精确离散化方法(2/4)考虑到u(t)在采样周期内保持不变的假定,所以有将上式与线性定常离散系统的状态方程x(k+1)T)=(I+AT)x(kT)+BTu(kT)比较,可知两式对任意的x(kT)和u(kT)成立的条件为G
8、(T)=(T)=eAT对上式作变量代换,令t=(k+1)T-,则上式可记为上两式即为精确离散化法的计算式。第12页,讲稿共26张,创作于星期二精确离散化方法精确离散化方法(3/4)例例3-11q解 首先求出连续系统的状态转移矩阵:q例3-11 试用精确离散化方法写出下列连续系统的离散化系统的状态方程:第13页,讲稿共26张,创作于星期二精确离散化方法精确离散化方法(4/4)例例3-11q根据精确法计算式有q于是该连续系统的离散化状态方程为第14页,讲稿共26张,创作于星期二近似离散化方法近似离散化方法(1/6)2.2.近似离散化方法近似离散化方法q所谓线性定常连续系统状态方程的近似离散化方法是
9、指在采样周期较小,且对离散化的精度要求不高的情况下,用状态变量的差商代替微商差商代替微商来求得近似的差分方程。即,由于x(kT)=LimT0 x(k+1)T)-x(kT)/T故当采样周期较小时,有x(kT)x(k+1)T)-x(kT)/T第15页,讲稿共26张,创作于星期二近似离散化方法近似离散化方法(2/6)将上式代入连续系统的状态方程,有x(k+1)T)-x(kT)/T=Ax(kT)+Bx(kT)即x(k+1)T)=(I+AT)x(kT)+BTu(kT)将上式与线性定常离散系统状态空间模型的状态方程比较,则可得如下近似离散化的计算公式:G(T)=I+AT H(T)=BTq将上述近似离散法和
10、精确离散法比较知,由于I+AT和BT分别是eAT和eAtdtB的Taylor展开式中的一次近似,因此近似离散化方法其实是取精确离散化方法的相应计算式的一次Taylor近似展开式。第16页,讲稿共26张,创作于星期二近似离散化方法近似离散化方法(3/6)例例3-12q由上述推导过程可知,一般说来,采样周期T越小,则离散化精度越高。但考虑到实际计算时的舍入误差等因素,采样周期T不宜太小。q例3-12 试用近似离散化方法写出下列连续系统的离散化系统的状态方程:第17页,讲稿共26张,创作于星期二q解 由近似离散化法计算公式,对本例有近似离散化方法近似离散化方法(4/6)例例3-12于是该连续系统的离
11、散化状态方程为第18页,讲稿共26张,创作于星期二近似离散化方法近似离散化方法(5/6)例例3-12近似法的计算结果为2.当T=0.001s时,精确法的计算结果为q对上述近似离散化法的精度可检验如下:1.当T=1s时,精确法的计算结果为第19页,讲稿共26张,创作于星期二近似离散化方法近似离散化方法(6/6)例例3-12近似法的计算结果为q从上述计算结果可知,近似离散法只适用于较小的采样周期。第20页,讲稿共26张,创作于星期二线性时变连续系统的离散化线性时变连续系统的离散化(1/6)3.4.2 线性时变连续系统的离散化线性时变连续系统的离散化q线性时变连续系统状态空间模型的离散化,实际上是指
12、在指定的采样周期T下,将连续系统的状态方程变换成线性时变离散系统的如下状态方程:第21页,讲稿共26张,创作于星期二q线性时变连续系统的状态方程的离散化,就是利用时变系统的状态轨迹求解公式来进行离散化。由3.3节可知,连续系统状态方程的解可表示为:线性时变连续系统的离散化线性时变连续系统的离散化(2/6)现在只考虑在采样时刻t=kT和t=(k+1)T时刻之间的状态响应,即对于上式,取t0=kT,t=(k+1)T,于是考虑到u(t)在采样周期内保持不变,所以有第22页,讲稿共26张,创作于星期二线性时变连续系统的离散化线性时变连续系统的离散化(3/6)比较下述两式可得线性时变连续系统离散化模型各矩阵如下 第23页,讲稿共26张,创作于星期二线性时变连续系统的离散化线性时变连续系统的离散化(4/6)q例例3-13 试写出下列线性时变连续系统的离散化系统的状态方程。p解解 由例3-9,该系统的转移矩阵函数为第24页,讲稿共26张,创作于星期二线性时变连续系统的离散化线性时变连续系统的离散化(5/6)因此,由上述离散化计算公式,可分别计算第25页,讲稿共26张,创作于星期二感感谢谢大大家家观观看看第26页,讲稿共26张,创作于星期二