《l六年级数学广角——数与形.doc》由会员分享,可在线阅读,更多相关《l六年级数学广角——数与形.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数与形教学设计教学内容:人教版义务教育课程标准实验教科书数学六年级上册P107例1.教学目标:1、让学生经历观察、猜想、验证、归纳等活动,发现图形中隐含着数的规律,并利用所发现的规律解决问题。2、让学生在解决问题的过程中,感悟数形结合、归纳推理的数学思想。教学重点:感受“形”与“数”之间的关系,培养学生用“数形结合”的思想解决问题。教学难点:在探究过程中积累基本的活动经验,感悟数形结合、归纳推理的数学思想。教具准备:计算器,课件, 正方形若干学具准备:正方形若干教学过程:一、谈话引入谈话:同学们喜欢魔术吗?最近,宋老师也有了一种魔力。只要是从1开始的几个连续奇数。例如:1+3+5 1+3+5+
2、7+9 1+3+5+7+9+11等等我会算的很快,你信吗?现场试验,请两位同学现场出题,两位同学用计算器算。谈话:想不想知道老师是怎么算这么快的?提示一下:我是借助图形发现这个方法的。今天,这节课我们就来研究数与形。【设计意图:通过老师有了魔力,能快速解题。来设置悬念,激发学生探讨秘诀的兴趣。】二、借图解数(教学例1)1、谈话:复杂的问题,先要从简单的开始。例如:1,就摆出一个小正方形。1+3= 对照算式中的1,先摆一个正方形图形,再对照算式中的3,摆出L形状的三个正方形,正好摆出了一个稍大一点的正方形。1+3+5用同样的方法。【设计意图:通过观察数与形的对照,感知数的规律。】2、猜一猜: 1
3、+3+5+7=?3、小组内同学动手摆一摆,验证一下我们的猜想。4、1+3+5+7+9=?还用摆吗?说一说你有什么发现?发现:有几个奇数相加,每边小正方形的个数就是几。这几个连续奇数的和就是几的平方。5、质疑:所有的算式都可以用这种方法计算吗?生:从1开始的,几个连续奇数的和等于几的平方。所以1=12,,像1、4、9这样的平方数,可以拼成大小不等的正方形,我们叫它们“正方形数。”【设计意图:体验猜想、验证的过程,归纳总结数的规律。】6、小练笔。1+3+5+7+9+11+13= =92自我挑战1+3+5+7+5+3+1= 1+3+5+7+9+11+13+11+9+7+5+3+1=这么巧妙的方法,我
4、们是借助图形来发现的。那么图形中是否也蕴含着数的规律呢?【设计意图:利用发现的规律解决问题,使方法得以提升。】三、图中找数1、课件出示题目,每个图形中各有多少个红色小正方形?多少个蓝色小正方形?2、生借助图直观数出每个图形中的红色和蓝色小正方形的个数。第5个图形呢?第6个图形?3、第10个图形?本上写一写。看有什么发现?4、第100个图形呢?小组讨论:红色小正方形的个数与蓝色小正方形个数有什么关系?学生1:第几个图形,就有几个红色。每增加一个红色会增加两个蓝色。所以,依次加2。学生2:两边的6个蓝色小正方形是固定不变的,中间蓝色小正方形的个数是红色小正方形个数的2倍。相加后就是蓝色小正方形的个
5、数。5、课件演示:帮助理解。【设计意图:先让学生直观感知红色和蓝色小正方形的个数,再脱离图形,发现规律,总结提升。】谈话:图形中确实蕴涵着数的问题。有图有数,又会有什么规律呢?看大屏幕。四、数形结合,找规律1、课件出示(练习二十二中的第2题),找规律。2、第5个图形会是什么样子,共有几个圆呢?画在书上。3、如果不画,第10个图是多少个圆?4、小组讨论。生1:第几个图形,最后一行就是几。生2:第几个图形,就从1加到几。生3:求和公式。【设计意图:让学生经历由直观到抽象,再总结提升】五、数形结合的实例。其实,在小学的学习当中数形结合的例子比比皆是。例如,我们解应用题时,经常要用线段图来理解题意。在求圆的面积时,求分数乘法的计算时,都用图形来帮忙。六、谈感受。学习了这课,你对“数”与“形”有什么感受?同学们说的非常好,正如我国著名数学家华罗庚所说(课件):数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。可见数形结合对我们数学的学习是很重要的。【设计意图:运用华罗庚先生的感悟,强调数形结合思想在数学学习中的重要性。】七、板书设计数 与 形1+3+5+7= 1=12 图形11+3+5+7+9+11= 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 从1开始的,几个连续的奇数相加等于几的平方