《题型18 求极值及最值(原卷版).doc》由会员分享,可在线阅读,更多相关《题型18 求极值及最值(原卷版).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、秒杀高考数学题型之求极值或最值【秒杀题型六】:求函数在某区间的极值、最值。【题型1】:极值或最值存在且可求。秒杀策略:关键是求出的单调区间,进而求出极值或最值。求函数的极大(小)值规范答题模板:Step1:求导数;Step2:求方程的所有实数根;Step3:考察在每个根附近从左到右导函数的符号如何变化,如果的符号由正变负,则 是极大值,如果由负变正,则是极小值,如果在=0的根的左、右两侧,的符号不变,则不是极值。可导函数在点取得极值的充要条件是,且在左侧与右侧,符号不同,是为极值点的必要条件,并非充分条件。如,但不是极值点。求函数在的最大(小)值规范答题模板:Step1:求在开区间内所有的极值
2、;Step2:求函数端点的函数值,极值与端点值进行比较,其中最大的一个为最大值,最小的一个为最小值,若最大值或最小值不确定,则一般要采用作差、构造新函数判断。 1.(2014年新课标全国卷II)函数在处导数存在,若;是的极值 点,则 ( ) A.是的充分必要条件 B.是的充分条件,但不是的必要条件 C.是的必要条件,但不是的充分条件 D.既不是的充分条件,也不是的必要条件2.(2017年新课标全国卷II11)若是函数的极值点,则的极小值为 ( )A. B. C. D.13.(高考题)设函数的定义域为,是的极大值点,以下结论一定正确的是 ( ) A. B.是的极小值点 C.是的极小值点 D.是的
3、极小值点 4.(2018年新课标全国卷I16)已知函数,则的最小值是 。5.(2015年新课标全国卷II21)设函数。 (1)证明:在单调递减,在单调递增; (2)若对于任意,都有,求的取值范围。6.(高考题)设函数(其中)。 (1)当时,求函数的单调区间; (2)当时,求函数在上的最大值。7.(2012年新课标全国卷21)已知函数满足。(1)求的解析式及单调区间;(2)若,求的最大值。【题型2】:极值或最值存在但不可求。秒杀策略:存在隐极值,根据导数存在隐零点,确定其大致区间,代入,确定极值的范围;或根据条件或所求范围确定隐零点的范围,代入,确定极值的范围。1.(2017年新课标全国卷II21)已知函数,且。(1)求;(2)证明:存在唯一的极大值点,且.