7.2 Integration by Parts.pdf

上传人:奉*** 文档编号:4102973 上传时间:2021-02-02 格式:PDF 页数:18 大小:856.08KB
返回 下载 相关 举报
7.2 Integration by Parts.pdf_第1页
第1页 / 共18页
7.2 Integration by Parts.pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《7.2 Integration by Parts.pdf》由会员分享,可在线阅读,更多相关《7.2 Integration by Parts.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 Integration by Parts x xe dx * Characteristics: The product of different functions. * Thinking idea: The derivation rule of product. lnxxdx arcsin xdx Integration by Parts has continuous derivatives. Then, we can obtain: Let functions ( ) and ( )uu xvv x ()uvu vuv()uvuvu v Integral: on both sides u

2、v dx ()uv dx u vdx udv uvvdu Integration by parts udvuvvdu The general principle of choosing (1) (2) Integration by Parts Integration by Parts andudv vis easy to obtain; vdu is more easier than .udv cos ,ux Find Method1 Example 1 cosxxdx udvuvvdu 2 , 2 x v sin,duxdx ,dvxdx Then, 2 coscos() 2 x xxdxx

3、d 2 cos 2 x x 2 sin 2 x xdx Obviously, choosing, u dvis very important, Otherwise, the integration becomes more difficult. Find cosxxdx ,ux Method2 Example 1 udvuvvdu sinvx ,dudxcos,dvxdx cossinxxdxxdx sinxxsinxdx sincosxxxC ,uxLet Find Example 2 x xe dx xx xeeC udvuvvdu x ve,dudx x dve dx xx xe dxx

4、de xx xee dx 2 ,ux Let Find Example 3 2x x e dx 22xx x e dxx de 2x x e 2 2() xxx x exeeC udvuvvdu x ve2,duxdx x dve dx 2 x xe dx (by parts again) Find Example 4 3 lnxxdx 4 1 ln 4 xx 4 1 ln 4 x dx 44 11 ln 416 xxxC udvuvvdu 4 3 lnln 4 x xxdxxd ln ,ux 4 , 4 x v 1 ,dudx x 3 dvx dx 11 Find Example 5 sin

5、 x exdx sin x xde sin(sincos ) 2 x x e exdxxxC sin x ex(sin ) x e dx sincos xx exexdx sincos xx exxde sin x ex(coscos ) xx exe dx (sincos )sin xx exxexdx Pay attention to the circular form u udv uudv Summary () Integration by Parts:udvuvvdu ( )sin,( )cos,( ), kx nnn P xaxdxP xaxdxP x e dx , are cons

6、tants,k a( ) is an -order polynomial. n P xn uuu Summary () ( )arcsin,( )arctan, nn P xxdxP xxdx ( )ln n P xxdx uu u We know, using the following two formulas arcsinarccos, 2 xx arctanarccot, 2 xx These integrations can be transformed into: ( )arccos, n P xxdx ( )arccot n P xxdx ( )arcsin, n P xxdx

7、( )arctan n P xxdx Summary () sin(),cos(), kxkx eaxb dxeaxb dx u should be the same type function every time. , are constant numbers.k a We can select u and dv by random arcsinarcsinxxxdx Questions and Answers arcsin xdx 2 1 arcsin 1 xxxdx x 2 arcsin1xxxC udvuvvdu Questions and Answers 2 6 1 lnttdt 2 7 1 1 ln 7 tdt 2 727 1 1 111 (ln ) 77 tttdt t 7 72 1 11 (2 ln2) 77 7 t 128127 ln2 749 udvuvvdu Questions and Answers cos x exdx cos x xde cos(cos ) xx exe dx cossin xx exxde cos(sin(sin ) xxx exxee dx (sincos )cos xx exxexdx cos(sincos ) 2 x x e exdxxxC Integration by Parts

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁