《勾股定理》同步练习1.doc

上传人:夏墨 文档编号:4072588 上传时间:2021-01-24 格式:DOC 页数:5 大小:136KB
返回 下载 相关 举报
《勾股定理》同步练习1.doc_第1页
第1页 / 共5页
《勾股定理》同步练习1.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《《勾股定理》同步练习1.doc》由会员分享,可在线阅读,更多相关《《勾股定理》同步练习1.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、勾股定理习题1已知:如图1,点A、D、B、E在同一条直线上,AD=BE,ACDF,BCEF.求证:AC=DF.2已知:如图2,BEAC,DFAC,垂足分别是E、F,O是BD的中点.求证:BE=DF.3已知:如图3, AB=DE,BC=EF,AF=CD. 求证:ABDE, BCEF.4已知:如图4, AB=AD,AC=AE, BAD=CAE.求证:. B=D.5已知:如图5, AD=AE,点D、E在BC上,BD=CE,ADE=AED.求证: ABEACD6已知:如图6, 已知AC、BD相交于点O,ABCD, OA=OC.求证: AB=CD7已知:如图7, 已知ACDF,BC=EF,C=F.求证:

2、 ABCDEF.8已知:如图8, 已知AC=AE,AB=AD.求证: OB=OD.9在直线L上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S、S、S、S,则S+S+S+S= .10张老师在一次“探究性学习”课中,设计了如下表:n2345a b46810c(1)请你分别观察a、b、c与n(n1)之间的关系,并分别用含n的代数式表示a、b、c:a= ,b= ,c= ;(2)猜想以a、b、c为边的三角形是否为直角三角形,并验证你的猜想.11分析:这是一道结论开放题,据题意经过分析,符合要求的点C有多个,如图2所示,都是符合要求的点.

3、 参考答案1思路分析:要证明AC=DF,则需要证明ABCDEF.在ABC和DEF中,由ACDF可得CAB=FDE, 由BCEF可得CBA=FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明ABCDEF由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证2思路分析:要证明BE=DF,则需要证明BOEDOF.在BOE和DOF中,由BEAC,DFAC可得BEO=DFO=90,BOE=DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明BOEDOF由已知O是BD的中点可得:OB=OD,条件已具备,命题得证3思路分析:要证明ABDE, B

4、CEF,则需要证明A=D, BCA=EFD,由此只需要证明ABCDEF.在ABC和DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明ABCDEF由已知AF=CD, 根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证4思路分析:要证明B=D,只需要证明ABCADE.在ABC和ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明ABCADE由已知BAD=CAE, 根据等式性质得:BAD+DAC =CAE+DAC,即BAC=DAE,命题得证5思路分析:要证明ABEACD

5、,在ABE和ACD中,已知AD =AE, ADE=AED即相邻的一角一边对应相等,因此,只需证明ADE与AED的另一邻边相等即可,用SAS证明ABEACD由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证6思路分析:要证明AB=CD,则需要证明ABOCDO.在ABO和CDO中,已知OA =OC, AOB=COD即相邻的一角一边对应相等,因此,只需证明OA与OC的另一邻角相等即可,用ASA证明ABOCDO由已知ABCD可得:A=C,命题得证7思路分析:要证明ABCDEF,在ABC和DEF中,已知BC =EF, C=F,即相邻的一角一边对应相等,因此,只需证明已知边的对角相等(A

6、=EDF)即可,从而用AAS证明ABCDEF由已知ACDF可得:A=EDF,命题得证8思路分析:要证明OB=OD,则需要证明BOEDOC,已知一边和它的对角相等,即由AC=AE,AB=AD可得BE=DC,对顶角BOE=DOC,从而只要证明另一组角相等(B=D)即可要证明B=D,只需要证明ABCADE,因为题中已知AC=AE,AB=AD,A是公共角,所以BOEDOC,B=D得证,从而命题得证9分析: 经过观察图形,可以看出正放着正方形面积与斜放置的正方形之间关系为: S+S=1; S+S=2; S+S=3;这样数形结合可把问题解决.解: S代表的面积为S的正方形边长的平方, S代表的面积为S的正方形边长的平方,所以S+S=斜放置的正方形面积为1;同理S+S=斜放置的正方形面积为3,故S+S+S+S=1+3=4.10分析:解:(1);2n; (2)猜想以a、b、c为边的三角形是直角三角形. 验证:由于 的三角形是直角三角形. 11如图2所示,是由边长为1的小正方形组成的正方形网格,以线段AB(A,B为格点)为一条直角边任意画一个RtABC,且点C为格点,并求出以BC为边的正方形的面积.解:画出的RtABC如图2中所示,=20,所以以BC为边的正方形面积为20.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁