四川省成都市2018年中考数学试卷word版(含答案).doc

上传人:叶*** 文档编号:40321829 上传时间:2022-09-09 格式:DOC 页数:9 大小:175.50KB
返回 下载 相关 举报
四川省成都市2018年中考数学试卷word版(含答案).doc_第1页
第1页 / 共9页
四川省成都市2018年中考数学试卷word版(含答案).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《四川省成都市2018年中考数学试卷word版(含答案).doc》由会员分享,可在线阅读,更多相关《四川省成都市2018年中考数学试卷word版(含答案).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2018年四川省成都市中考数学试卷A卷一、选择题(每小题3分,共30分)1(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()AaBbCcDd2(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道将数据40万用科学记数法表示为()A4104B4105C4106D0.41063(3分)如图所示的正六棱柱的主视图是()ABCD4(3分)在平面直角坐标系中,点P(3,5)关于原点对称的点的坐标是()A(3,5)B(3,5)C(3,5)D(3,5)5(3分)下列计算正确的

2、是()Ax2+x2=x4B(xy)2=x2y2C(x2y)3=x6yD(x)2x3=x56(3分)如图,已知ABC=DCB,添加以下条件,不能判定ABCDCB的是()AA=DBACB=DBCCAC=DBDAB=DC7(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A极差是8B众数是28C中位数是24D平均数是268(3分)分式方程=1的解是()Ax=1Bx=1Cx=3Dx=39(3分)如图,在ABCD中,B=60,C的半径为3,则图中阴影部分的面积是()AB2C3D610(3分)关于二次函数y=2x2+4x1,下列说法正确的是()A图象及y轴的交点坐标为

3、(0,1) B图象的对称轴在y轴的右侧C当x0时,y的值随x值的增大而减小 Dy的最小值为3答案:一、选择题(每小题3分,共30分)1D2B3A4C5D6C7B8A9C10D二、填空题(每小题4分,共16分)11(4分)等腰三角形的一个底角为50,则它的顶角的度数为 12(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是 13(4分)已知=,且a+b2c=6,则a的值为 14(4分)如图,在矩形ABCD中,按以下步骤作图:分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;作直线

4、MN交CD于点E若DE=2,CE=3,则矩形的对角线AC的长为 答案:二、填空题(每小题4分,共16分)1180126131214三、解答题(本大题共6个小题,共54分)15(12分)(1)22+2sin60+|(2)化简:(1)16(6分)若关于x的一元二次方程x2(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围17(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表 满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为

5、 ,表中m的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定18(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70方向,且及航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37方向如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长(参考数据:sin700.94,cos700.34,tan702,75,sin370.6,

6、cos370.80,tan370.75)19(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(2,0),及反比例函数y=(x0)的图象交于B(a,4)(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MNx轴,交反比例函数y=(x0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标20(10分)如图,在RtABC中,C=90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D的O分别交AB,AC于点E,F,连接OF交AD于点G(1)求证:BC是O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;

7、(3)若BE=8,sinB=,求DG的长,A卷解答题:三、解答题(本大题共6个小题,共54分)15(12分)(1)6,(2)x116(6分)a17(8分)(1)120,45%;(2)根据n=48,画出条形图:(3)3600100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定18(8分)解:由题意得:ACD=70,BCD=37,AC=80海里,在直角三角形ACD中,CD=ACcosACD=27.2海里,在直角三角形BCD中,BD=CDtanBCD=20.4海里答:还需航行的距离BD的长为20.4海里19(10分)解:(1)一次函数y=x+b的图象经过点A(2,0),0

8、=2+b,得b=2,一次函数的解析式为y=x+2,一次函数的解析式为y=x+2及反比例函数y=(x0)的图象交于B(a,4),4=a+2,得a=2,4=,得k=8,即反比例函数解析式为:y=(x0);(2)点A(2,0),OA=2,设点M(m2,m),点N(,m),当MNAO且MN=AO时,四边形AOMN是平行四边形,|=2,解得,m=2或m=+2,点M的坐标为(2,)或(,2+2)20(10分)(1)证明:如图,连接OD,AD为BAC的角平分线,BAD=CAD,OA=OD,ODA=OAD,ODA=CAD,ODAC,C=90,ODC=90,ODBC,BC为圆O的切线;(2)解:连接DF,由(1

9、)知BC为圆O的切线,FDC=DAF,CDA=CFD,AFD=ADB,BAD=DAF,ABDADF,=,即AD2=ABAF=xy,则AD=;(3)解:连接EF,在RtBOD中,sinB=,设圆的半径为r,可得=,解得:r=5,AE=10,AB=18,AE是直径,AFE=C=90,EFBC,AEF=B,sinAEF=,AF=AEsinAEF=10=,AFOD,=,即DG=AD,AD=,则DG=B卷一、填空题(每小题4分,共20分)21(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为 22(4分)汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”是我国古代数学的瑰宝如图所

10、示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 22题图 24题图 25题图23(4分)已知a0,S1=,S2=S11,S3=,S4=S31,S5=,(即当n为大于1的奇数时,Sn=;当n为大于1的偶数时,Sn=Sn11),按此规律,S2018= 24(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EFAD时,的值为 25(4分)设双曲线y=(k0)及直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平

11、移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k0)的眸径为6时,k的值为 二、解答题(本大题共3小题,共30分)26(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)及种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元(1)直接写出当0x300和x300时,y及x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若

12、甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27(10分)在RtABC中,ACB=90,AB=,AC=2,过点B作直线mAC,将ABC绕点C顺时针旋转得到ABC(点A,B的对应点分别为A,B),射线CA,CB分別交直线m于点P,Q(1)如图1,当P及A重合时,求ACA的度数;(2)如图2,设AB及BC的交点为M,当M为AB的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA,CB的延长线上时,试探究四边形PABQ的面积是否存在最小值若存在,求出四边形PABQ的最小面积;若不存

13、在,请说明理由28(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c及直线l:y=kx+m(k0)交于A(1,1),B两点,及y轴交于C(0,5),直线及y轴交于点D(1)求抛物线的函数表达式;(2)设直线l及抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且BCG及BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使APB=90,求k的值2018年四川省成都市中考数学试卷B卷参考答案及试题解析一、填空题(每小题4分,共20分)210.36,222324 解:延长NF及DC交于点H,ADF=90,A+FDH=90,DFN+DFH

14、=180,A+B=180,B=DFN,A=DFH,FDH+DFH=90,NHDC,设DM=4k,DE=3k,EM=5k,AD=9k=DC,DF=6k,tanA=tanDFH=,则sinDFH=,DH=DF=k,CH=9kk=k,cosC=cosA=,CN=CH=7k,BN=2k,=25解:以PQ为边,作矩形PQQP交双曲线于点P、Q,如图所示联立直线AB及双曲线解析式成方程组,解得:,点A的坐标为(,),点B的坐标为(,)PQ=6,OP=3,点P的坐标为(,)根据图形的对称性可知:AB=OO=PP,点P的坐标为(+2,+2)又点P在双曲线y=上,(+2)(+2)=k,解得:k=故答案为:二、解

15、答题(本大题共3小题,共30分)26(8分)【解答】解:(1)y=(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000a)m2,200a800当200a300时,W1=130a+100(1200a)=30a+12000当a=200 时Wmin=126000 元当300a800时,W2=80a+15000+100(1200a)=13500020a当a=800时,Wmin=119000 元119000126000当a=800时,总费用最少,最少总费用为119000元此时乙种花卉种植面积为1200800=400m2答:应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植

16、总费用最少,最少总费用为119000元27(10分)解:(1)由旋转可得:AC=AC=2,ACB=90,AB=,AC=2,BC=,ACB=90,mAC,ABC=90,cosACB=,ACB=30,ACA=60;(2)M为AB的中点,ACM=MAC,由旋转可得,MAC=A,A=ACM,tanPCB=tanA=,PB=BC=,tanQ=tanA=,BQ=BC=2,PQ=PB+BQ=;(3)S四边形PABQ=SPCQSACB=SPCQ,S四边形PABQ最小,即SPCQ最小,SPCQ=PQBC=PQ,法一:(几何法)取PQ的中点G,则PCQ=90,CG=PQ,即PQ=2CG,当CG最小时,PQ最小,C

17、GPQ,即CG及CB重合时,CG最小,CGmin=,PQmin=2,SPCQ的最小值=3,S四边形PABQ=3;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,当PQ最小时,x+y最小,(x+y)2=x2+2xy+y2=x2+6+y22xy+6=12,当x=y=时,“=”成立,PQ=+=2,SPCQ的最小值=3,S四边形PABQ=328(12分)【解答】解:(1)由题意可得,解得,a=1,b=5,c=5;二次函数的解析式为:y=x25x+5,(2)作AMx轴,BNx轴,垂足分别为M,N,则,MQ=,NQ=2,B(,);,解得,D(0,),同理可求,SBCD=SBCG,DGBC(G在BC下方),=x25x+5,解得,x2=3,x,x=3,G(3,1)G在BC上方时,直线G2G3及DG1关于BC对称,=,=x25x+5,解得,x,x=,G(,),综上所述点G的坐标为G(3,1),G(,)(3)由题意可知:k+m=1,m=1k,yl=kx+1k,kx+1k=x25x+5,解得,x1=1,x2=k+4,B(k+4,k2+3k+1),设AB中点为O,P点有且只有一个,以AB为直径的圆及x轴只有一个交点,且P为切点,OPx轴,P为MN的中点,P(,0),AMPPNB,AMBN=PNPM,1(k2+3k+1)=(k+4)(),k0,k=1+第 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁