《人教版八年级数学下册各单元及期中期末测试题及答案精品全套共7套.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册各单元及期中期末测试题及答案精品全套共7套.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册各单元及期中期末测试题及答案【精品全套 共7套】第十六章 分式单元测试题(时间90分钟 满分100分)班级_姓名_学号_成绩_一、选一选(请将唯一正确答案代号填入题后的括号内,每小题3分,共30分)1已知xy,下列各式及相等的是( ).(A) (B) (C) (D)2化简的结果是( ).(A) (B) (C) (D)3化简的结果为( ).(A)x-1 (B)2x-1 (C)2x+1 (D)x+14计算 的正确结果是( ).(A) (B)1 (C) (D)-15分式方程( ).(A)无解 (B)有解x=1 (C)有解x=2 (D)有解x=06若分式的值为正整数,则整数x的值为
2、( )(A)0 (B)1 (C)0或1 (D)0或-17一水池有甲乙两个进水管,若单独开甲、乙管各需要a小时、b小时可注满空池;现两管同时打开,那么注满空池的时间是( )(A) (B) (C) (D)8汽车从甲地开往乙地,每小时行驶km,t小时可以到达,如果每小时多行驶km,那么可以提前到达的小时数为 ( )(A) (B) (C) (D)9下列说法:若a0,m,n是任意整数,则aman=am+n; 若a是有理数,m,n是整数,且mn0,则(am)n=amn ;若ab且ab0,则(a+b)0=1;若a是自然数,则a-3a2=a-1其中,正确的是( )(A) (B) (C) (D)10张老师和李老
3、师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是:( )(A) (B) (C) (D)二、填一填(每小题4分,共20分)11计算12方程的解是13计算 a2b3(ab2)-2=14瑞士中学教师巴尔末成功地从光谱数据中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是15如果记 =f(x),并且f(1)表示当x=1时y的值,即f(1)=;f()表示当x=时y的值,即f()=;那么f(1)+f(2)+f()+f(3)+f()+f(n)+f()= (结果
4、用含n的代数式表示)三、做一做16(7分)先化简,再求值:,其中m=-2.17(7分)解方程:.18(8分)有一道题“先化简,再求值: 其中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?19(9分)学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?20(9分)A、B两地相距80千米,甲骑车从A地出发1小时后,乙也从A地出发,以甲的速度的1.5倍追赶,当乙到达B地时,甲已先到20分钟,求甲、乙的速度四、试一试21(10分
5、)在数学活动中,小明为了求 的值(结果用n表示),设计如图1所示的几何图形(1)请你利用这个几何图形求的值为;(2)请你利用图2,再设计一个能求的值的几何图形第十七章 反比例函数单元测试题(时间90分钟 满分100分)班级_姓名_座号_成绩_一、选择题(每题4分,共24分)1下列函数关系式中不是表示反比例函数的是( ) Axy=5 By= Cy=-3x-1 Dy=2若函数y=(m+1)是反比例函数,则m的值为( ) Am=-2 Bm=1 Cm=2或m=1 Dm=-2或-13满足函数y=k(x-1)和函数y=(k0)的图象大致是( )4在反比例函数y=-的图象上有三点(x1,y1),(x2,y2
6、),(x3,y3),若x1x20x3,则下列各式正确的是( )Ay3y1y2 By3y2y1 Cy1y2y3 Dy1y3y25如图所示,A、C是函数y=的图象上的任意两点,过A点作ABx轴于点B,过C点作CDy轴于点D,记AOB的面积为S1,COD的面积为S2,则( )AS1S2 BS10)上,且x1x20,则y1_y2三、解答题(共46分)13(10分)设函数y=(m-2),当m取何值时,它是反比例函数?它的图象位于哪些象限?求当x2时函数值y的变化范围14(12分)已知y=y1+y2,y1及x成正比例,y2及x成反比例,并且当x=-1时,y=-1,当x=2时,y=5,求y关于x的函数关系式
7、15(10分)水池内储水40m3,设放净全池水的时间为T小时,每小时放水量为Wm3,规定放水时间不得超过20小时,求T及W之间的函数关系式,指出是什么函数,并求W的取值范围16(14分)如图所示,点A、B在反比例函数y=的图象上,且点A、B的横坐标分别为a、2a(a0),ACx轴于点C,且AOC的面积为2 (1)求该反比例函数的解析式 (2)若点(-a,y1)、(-2a,y2)在该函数的图象上,试比较y1及y2的大小 (3)求AOB的面积第18章 勾股定理单元测试(时间:100分钟 总分:120分)班级 学号 姓名 得分 一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为
8、6,8,10,它的最短边上的高为( )A. 6 B. 4.5 C. 2.4 D. 8 2. 下面几组数:7,8,9;12,9,15;m2 + n2, m2n2, 2mn(m,n均为正整数,mn);,.其中能组成直角三角形的三边长的是( )A. B. C. D. 3. 三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )Aa:b:c=81617 B a2-b2=c2 Ca2=(b+c)(b-c) D a:b:c =13512 4. 三角形的三边长为,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形. 5已知一个直角三角形的两边长分别为3
9、和4,则第三边长是() A5 B25CD5或6已知RtABC中,C=90,若a+b=14cm,c=10cm,则RtABC的面积是()A. 24cm2B. 36cm2 C. 48cm2 D. 60cm27直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A121 B120 C90 D不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A600米 B. 800米 C. 1000米 D. 不能确定二、你能填得又快又对吗?(每小题4分,共32分)9
10、. 在ABC中,C=90, AB5,则+=_第10题图第13题图第14题图第15题图10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 11直角三角形两直角边长分别为5和12,则它斜边上的高为_12直角三角形的三边长为连续偶数,则这三个数分别为_13 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处树折断之前有_米.14如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为 15如图,梯子AB靠在墙上,梯子的底
11、端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离等于3米,同时梯子的顶端 B下降至 B,那么 BB的值: 等于1米;大于1米5;小于1米.其中正确结论的序号是 16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段18(6分)已知a、
12、b、c是三角形的三边长,a2n22n,b2n1,c2n22n1(n为大于1的自然数),试说明ABC为直角三角形.19(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?AB41.524.50.520.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km,再折回向北走到4.5km处往东一拐,仅走0.5km就找到宝藏。问登陆点A及宝藏埋藏点B之间的距离是多少?21(7分)如图,将一根25长的细木棒放入长、宽、高分别为8、6和10的长方体无盖盒子
13、中,求细木棒露在盒外面的最短长度是多少?22.(8分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.23(8分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40航行,乙船向南偏东50航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少? 24(10分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿CAB的角平分线AD折叠,使它落
14、在斜边AB上,且及AE重合,你能求出CD的长吗?AECDB25(10分)如图,铁路上A、B两点相距25km, C、D为两村庄,若DA=10km,CB=15km,DAAB于A,CBAB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处? AB小河东北牧童小屋26(10分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?八年级数学(下)第十九章平行四边形单元检测(时间90分钟 满分100分)班级 学号 姓名 得分 一、选择题(每小题3分,共24分)1
15、在平行四边形ABCD中,B=110,延长AD至F,延长CD至E,连结EF,则EF( )A110 B30 C50D702菱形具有而矩形不具有的性质是 ( )A对角相等 B四边相等 C对角线互相平分 D四角相等3如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点若OE=3 cm,则AB的长为 ( ) A3 cm B6 cm C9 cm D12 cm 4已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点若AB2,AD4,则图中阴影部分的面积为 ( )A8 B6 C4 D35用两块全等的含有30角的三角板拼成形状不同的平行四边形,最多可以拼成 ( )A
16、1个 B2个 C3个 D4个6如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( ) A88 mm B96 mm第6题C80 mm D84 mm7如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形 ( )第7题AADECBF BABECDFCOEOF DDEBF第8题8如图是用4个相同的小矩形及1个小正方形镶嵌而成的正方形图案已知该图案的面积为49,小正方形的面积为4,若用x、y表示小矩形的两边长(xy),请观察图案,指出以下关系式中不正确的是 ( ) ABCD
17、二、填空题(每小题4分,共24分)9若四边形ABCD是平行四边形,请补充条件 (写一个即可),使四边形ABCD是菱形第10题10如图,在平行四边形ABCD中,已知对角线AC和BD相交于点O,ABO的周长为15,AB6,那么对角线ACBD 11如图,延长正方形ABCD的边AB到E,使BEAC,则E 第11题12已知菱形ABCD的边长为6,A60,如果点P是菱形内一点,且PBPD,那么AP的长为 13在平面直角坐标系中,点A、B、C的坐标分别是A(2,5),B(3,1),C(1,1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是 14如图,四边形ABCD的两条对角线AC、B
18、D互相垂直, A1B1C1D1是中点四边形如果AC3,BD4,第14题那么A1B1C1D1的面积为 三、解答题(52分)15(8分)如图,在矩形ABCD中,AE平分BAD,115(1)求2的度数(2)求证:BOBE16(8分)已知:如图,D是ABC的边BC上的中点,DEAC,DFAB,垂足分别为E、F,且BFCE当A满足什么条件时,四边形AFDE是正方形?请证明你的结论17(8分)如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线及边AD、BC分别交于E、F 求证:四边形AFCE是菱形18(8分)已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB到点F,使 BFB
19、C,连结DF交AB于E求证:OE( )BF(在括号中填人一个适当的常数,再证明)19(8分)在一次数学探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组(2)请在下图的三个平行四边形中画出满足小强分割方法的直线(3)由上述实验操作过程,你发现所画的两条直线有什么规律?20(12分)已知:如图,在ABC中,ABAC,若将ABC绕点C顺时针旋转180得到FEC (1)试猜想线段AE及BF有何关系?说明理由 (2)若ABC的面积为3 cm2,请求四边形ABFE的面积 (3)当ACB
20、为多少度时,四边形ABFE为矩形?说明理由第二十章 数据分析单元测试班级_姓名_学号_成绩_一、填空题(每空4分,共32分)1对于数据组3,3,2,3,6,3,6,3,2中,众数是_;平均数是_;极差是_,中位数是_2数据3,5,4,2,5,1,3,1的方差是_3某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_4在n个数中,若x1出现f1次,x2出现f2次,xk出现fk次,且f1+f2+fk=n,则它的加权平均数=_(略)5一组数据同时减去80,实得新的一组数据的平均数为2.3,那么原数据的平均数为_二、选择题(每题5分,共20分)6已知样本
21、数据为5,6,7,8,9,则它的方差为( ) A10 B C2 D78个数的平均数12,4个数的平均为18,则这12个数的平均数为( ) A12 B18 C14 D128甲、乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么( ) A甲的波动比乙的波动大 B乙的波动比甲的波动大 C甲、乙的波动大小一样 D甲、乙的波动大小无法确定9在某次数学测验中,随机抽取了10份试卷,其成绩如下: 85,81,89,81,72,82,77,81,79,83 则这组数据的众数、平均数及中位数分别为( ) A81,82,81 B81,81,765 C83,81,77 D81,81,81三
22、、解答题(每题16分,共48分)10某公司员工的月工资如下: 员工 经理 副经理 职员A 职员B 职员C 职员D 职员E 月工资(元) 6000 3500 1500 1500 1500 1100 1000 (1)求该公司员工月工资的中位数、众数、平均数;(2)用平均数还是用中位数和众数描述该公司员工月工资的一般水平比较恰当?11为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题: (1)填写频率分布表中未完成的部分; (2)这组数据的中位数落在什么范围内
23、;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比12小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表: (1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议附加题(10分) 下图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题: (1)该队队员
24、年龄的平均数; (2)该队队员年龄的众数和中位数八年级下期期中数学综合测试(时间:120分钟 总分:120分)班级 学号 姓名 得分 一、选择题(每小题3分,共30分)1 在式子, ,9 x +,中,分式的个数是( )A.5 B.4 C. D.2. 下列各式,正确的是( )A. B. C. D.=23. 下列关于分式的判断,正确的是( )A.当x=2时,的值为零 B.无论x为何值,的值总为正数C.无论x为何值,不可能得整数值 D.当x3时,有意义4. 把分式中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的( )A.2倍 B.4倍 C.一半 D.不变5. 下列三角形中是直角
25、三角形的是( )A.三边之比为567 B.三边满足关系a+b=c C.三边之长为9、40、41 D.其中一边等于另一边的一半6如果ABC的三边分别为,其中为大于1的正整数,则( ) A.ABC是直角三角形,且斜边为;B.ABC是直角三角形,且斜边为 C.ABC是直角三角形,且斜边为; D.ABC不是直角三角形7直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( ) A. 20 B. 22 C. 24 D. 268已知函数的图象经过点(2,3),下列说法正确的是( ) Ay随x的增大而增大 B.函数的图象只在第一象限 C当x0时,必有y0 D.点(-2,-3)不在此函数的图象上
26、9在函数(k0)的图象上有三点A1(x1, y1 )、A2(x2, y2)、A3(x3, y3 ),已知x1x20x3,则下列各式中,正确的是 ( ) A.y1y2y3 B.y3y2y1 C. y2 y1y3 D.y3y1y210.如图,函数yk(x1)及(k0)在同一坐标系中,图象只能是下图中的( )二、填空题(每小题2分,共20分)第14题图11不改变分式的值,使分子、分母的第一项系数都是正数,则. 12化简:=_; =_. 13已知5,则的值是 14正方形的对角线为4,则它的边长AB= .15如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是_米.16一艘帆船由于风向的
27、原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有_km.17如下图,已知OA=OB,那么数轴上点A所表示的数是_.第20题图18某食用油生产厂要制造一种容积为5升(1升1立方分米)的圆柱形油桶,油桶的底面面积s及桶高h的函数关系式为 .19如果点(2,)和(,a)都在反比例函数的图象上,则a .20如图所示,设A为反比例函数图象上一点,且矩形ABOC的面积为3,则这个反比例函数解析式为 .三、解答题(共70分)21(每小题4分,共16分)化简下列各式:(1) (2).(3). (4)()() 22(每小题4分,共8分)解下列方程:(1)3 (2).23(6分)
28、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度24(6分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米? BCAECDBA25(6分)如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B及墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为
29、0.5米,求梯子顶端A下落了多少米?26(8分)某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位: 台天)及生产的时间t(单位: 天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?27(10分)如图,正方形OABC的面积为9,点O为坐标原点,点B在函数(k0,x0)的图象上,点P(m、n)是函数(k0,x0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求B点坐标和k的值;(
30、2)当S时,求点P的坐标;(3)写出S关于m的函数关系式.28(10分)如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?AB河边l人教实验版八年级(下)期末测试题学校_班级_姓名_得分_一、选择题(每题2分,共24分)1、下列各式中,分式的个数有( )A、2个 B、3个 C、4个 D、5个2、如果把中的x和y都扩大5倍,那么分式
31、的值( )A、扩大5倍 B、不变 C、缩小5倍 D、扩大4倍3、已知正比例函数y=k1x(k10)及反比例函数y=(k20)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分及地面成30夹角,这棵大树在折断前的高度为( )A10米 B15米 C25米 D30米5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A、菱形或矩形 B、正方形或等腰梯形 C、矩形或等腰梯形 D、菱形或直角梯形6、把分式方程的两边同时乘以(x-2), 约去分母,得(
32、 )A1-(1-x)=1 B1+(1-x)=1 C1-(1-x)=x-2 D1+(1-x)=x-27、如图,正方形网格中的ABC,若小方格边长为1,则ABC是( )A、直角三角形 B、锐角三角形 C、钝角三角形 D、以上答案都不对 D A B C (第7题) (第8题) (第9题)8、如图,等腰梯形ABCD中,ABDC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是 ( )A、 B、 C、 D、9、如图,一次函数及反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( )A、x1 B、x2 C、1x0,或x2 D、x1,或0x210、在一次科技
33、知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为,。下列说法:两组的平均数相同;甲组学生成绩比乙组学生成绩稳定;甲组成绩的众数乙组成绩的众数;两组成绩的中位数均为80,但成绩80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。其中正确的共有( ).分数50人数甲组251013146乙组441621212(A)2种 (B)3种 (C)4种 (D)5种11、小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的速度为n千米/时,则小明上学和放学路上的平均速度为( )千米/时A、 B、 C、
34、 D、12、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期。收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)142127172 据调查,市场上今年樱桃的批发价格为每千克15元。用所学的统计知识估计今年此果园樱桃的总产量及按批发价格销售樱桃所得的总收入分别约为( )A. 2000千克,3000元 B. 1900千克,28500元 C. 2000千克,30000元 D. 1850千克,27750元二、填空题(每题2分,共24分)13、当x 时,分式无意义;当 时,分式的值为零14、各分式的最简公分母是_15、已知双曲线
35、经过点(1,3),如果A(),B()两点在该双曲线上,且0,那么 16、梯形中,直线为梯形的对称轴,为上一点,那么的最小值 。ABMNCD (第16题) (第17题) (第19题)17、已知任意直线l把ABCD分成两部分,要使这两部分的面积相等,直线l所在位置需满足的条件是 _ 18、如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若CFE=60,且DE=1,则边BC的长为 19、如图,在ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:ABECDF;AG=GH=HC;EG=SABE=SAGE,其中正确的结论是 _ 个20、点A是反比例
36、函数图象上一点,它到原点的距离为10,到x轴的距离为8,则此函数表达式可能为_21、已知:是一个恒等式,则A_,B=_。22、如图, P1OA1 、P2A1A2是等腰直角三角形,点、在函数的图象上,斜边、都在轴上,则点的坐标是_.(第22题) (第24题)23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为_分。24、在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4_。三、解答题(共52分)25、(5分)已知实数a满足a22a8=0,求的值.26、(5分)解分式方程: 27、(6分)作图题:如图,RtABC中,ACB=90,CAB=30,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。(保留作图痕迹,不要求写作法