《等比数列求和公式.docx》由会员分享,可在线阅读,更多相关《等比数列求和公式.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等比数列求和公式教学目标1.通过教学使学生理解等比数列的概念,推导并驾驭通项公式.2.使学生进一步体会类比、归纳的思想,培育学生的视察、概括实力.3.培育学生勤于思索,实事求是的精神,及严谨的科学看法.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法探讨、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)2,1,4,7,10,13,16,19,8,16,32,64,128,256,1,1,1,1,1,1,1,243,81,27,9,3,1, , ,31,29,27,25,23,21,19,1,1,1,1,
2、1,1,1,1,1,10,100,1000,10000,100000,0,0,0,0,0,0,0,由学生发表看法(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摇摆数列,也可能分为等差、等比两类),统一一种分法,其中为有共同性质的一类数列(学生看不出的状况也无妨,得出定义后再考察是否为等比数列).二、讲解新课请学生说出数列的共同特性,老师指出实际生活中也有很多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设起先有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,始终进行下去,记录下每个单位时间的变形虫个数得到了一
3、列数 这个数列也具有前面的几个数列的共同特性,这是我们将要探讨的另一类数列等比数列. (这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1.等比数列的定义(板书)依据等比数列与等差数列的名字的区分与联系,尝试给等比数列下定义.学生一般回答可能不够完备,多数状况下,有了等差数列的基础是可以由学生概括出来的.老师写出等比数列的定义,标注出重点词语.请学生指出等比数列各自的公比,并思索有多数列既是等差数列又是等比数列.学生通过视察可以发觉是这样的数列,老师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满意既是等差又是等比数列,让学生探讨
4、后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.老师追问理由,引出对等比数列的相识:2.对定义的相识(板书)(1)等比数列的首项不为0;(2)等比数列的每一项都不为0,即 ;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?(3)公比不为0.用数学式子表示等比数列的定义. 是等比数列 .在这个式子的写法上可能会有一些争议,如写成 ,可让学生探讨行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列须要几个条件?当给定了首项及公比后,如何求随意一项
5、的值?所以要探讨通项公式.3.等比数列的通项公式(板书)问题:用 和 表示第 项 .不完全归纳法 .叠乘法 , , ,这 个式子相乘得 ,所以 .(板书)(1)等比数列的通项公式得出通项公式后,让学生思索如何相识通项公式.(板书)(2)对公式的相识由学生来说,最终归结:函数观点;方程思想(因在等差数列中已有相识,此处再复习巩固而已).这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简洁的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要留意规范表述的训练)假如增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再探讨.同学可以试着编几道题.三、小结1.本节课探讨了等比数列的概念,得到了通项公式;2.留意在探讨内容与方法上要与等差数列相类比;3.用方程的思想相识通项公式,并加以应用.四、作业(略)五、板书设计三.等比数列1.等比数列的定义2.对定义的相识3.等比数列的通项公式(1)公式(2)对公式的相识