《2022年人教版高一数学必修一复习题 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高一数学必修一复习题 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学必修(一)复习题一、选择题1、满足条件3211、M的集合 M 的个数是()A、1 B、2 C、3 D、4 2、已 知 全 集BACxxByyARUUx),则(,0ln|12|()A、B、121|xxC、1|xxD、10|xx3、设全集TSCTSUU),则(,、,集合、4314321()A、42、B、4C、D、431、4、已知集合NMxxNxxM,则,4|01|2()A、1-,B、21-,C、21-,D、,25、设集合BAxRxBA,则,0|101-()A、01-,B、1-C、10,D、16、已知函数)41(,0,30,log)(2ffxxxxfx则的值是()A、91B、-9 C、91D、9
2、 7、若函数)31(log31,1,0,40,1,)41()(4ffxxxfxx则()A、31B、3 C、41D、4 8、若)()(2)1(xfxfxf,则等于()A、x2B、x2C、2xD、x2log9、已知集合2104211-,NM给出下列四个对应法则,其中能构成从M到 N 的函数是()A、2xyB、1xyC、xy2D、|log2xy名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 8 页 -10、定义在R 上的函数)(xf对任意两个不相等实数0)()(,babfafba总有成立,则必有()A、Rxf在)(上是增函数B、Rxf在)(上是减函数C、函数)(xf是先增加后减少D、函
3、数)(xf是先减少后增加11、设3,2,1,21,1,2,则使幂函数),为奇函数且在(0 xy上单调递增的值的个数为()A、0 B、1 C、2 D、3 12、已知2.03.03.0,2,3.0cba,则 a,b,c 三者的大小关系是()A、bca B、bac C、abc D、cba 13、若不等式)31,0(0log32xxxa对任意恒成立,则实数a的取值范围是()A、1,271B、1,271C、271,0D、271,014、设0,0 ba,()A、若bababa则,3222B、若bababa则,3222C、若bababa则,3222D、若bababa则,322215、已知5.06.06.05
4、.0ln5.0logcba,则()A、cbaB、bcaC、bacD、abc16、化简4332)5(的结果为()A、5 B、5C、5D、-5 17、已知)2()2()2()1(3log4)3(22nxffffxf则的值等于()A、)1(2nnB、)1(nnC、)1(log42nnD、)1(4nn18、设cba,均为正数,且cbacba22121log)21(log)21(log2,则()A、bacB、abcC、cbaD、cab名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 8 页 -19、函数20)10()(,在区间aaxfx上的最大值比最小值大43,则a的值为()A、21B、27
5、C、22D、2320、若1-)12lg()(2,在区间aaxxxf上递减,则 a 的取值范围为()A、21,B、21,C、,1D、,2二、填空题1、已知函数*),(Nxxfy,对任意nnffNn3)(*都有,且)3()(fxf是增函数,则_ 2、已知函数2,)1(2,2)(3xxxxxf,若关于kxfx)(的方程有两个不同的实根,则实数 k 的取值范围是 _ 3、已知函数12log)(2xxxf的定义域为集合 A,关于xaax22的不等式的解集为 B,若BA,求实数a的取值范围 _ 4、已 知 函 数02,0,)(221xxxcxxxf,其 中)(,0 xfc那么的 零 点 是_;r 若)(x
6、f的 值 域 是c,则2,41的 取 值 范 围 是_ 5、函数02)1(12)2lg(xxxxy的定义域是 _ 6、若函数12)(22aaxxxf的定义域为 R,则 a 的取值范围是 _ 7、已知函数affxaxxxxfx4)0(,1,1,12)(2若,则实数a=_ 名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 8 页 -8、函 数)(xfy的 图 象 与xy2的 图 象 关 于 直 线xy对 称,则 函 数)4(2xxfy的递增区间是 _ 9、若5221xxx 满足,2122,5)1(log22xxxxx则满足_ 10、设函数0),(log0,log)(212xxxxxf,
7、若)()(afaf,则实数a 的取值范围是_ 11、已知)(xfy是定义在(-2,2)上的增函数,若mmfmf则),21()1(的取值范围是 _ 12、函数xxy2)1(log2的定义域是 _ 13、已知4343)(2xxxf,若)(xf的定义域和值域都是baba则,_ 14、函数)1lg(11)(xxxf的定义域是 _ 15、函数)11ln()(22xxxxxf的值域为 _ 三、解答题1、已知定义在 R上的奇函数xxxfxxf2)(0)(2时,当(1)求函数Rxf在)(上的解析式(2)若函数21)(axf,在区间上单调递增,求实数a 的取值范围名师资料总结-精品资料欢迎下载-名师精心整理-第
8、 4 页,共 8 页 -2、已知函数),()(为常数实数qpxqpxxf,且满足417)2(,25)1(ff(1)求函数)(xf的解析式(2)判断并证明210)(,在xf上的单调性(3)当mxfx2)(21,0时,函数恒成立,求实数m 的取值范围3、已知函数)0(21)0(2)0(3)(2xxxxxxf(1)画出函数的图像(2)求)3(),)(1(2ffRaaf的值(3)当xxf时,求2)(的取值范围名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 8 页 -4、已知函数)()19(log)(9Rkkxxfx为偶函数(1)求 k 的值(2)解关于)0(0)1(log)(9aaaxf
9、x的不等式5、求下列函数的值域(1)求函数12xxy的值域(2)求函数434322xxxxy的值域(3)求函数1,0),11)(211(2xxxxy的值域名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 8 页 -6、已知定义在 R上的函数212)(1|22|)(2xxxgxxf,。(1)解不等式xxf3)(;(2)若对任意)(|1|)(21,mgxxfRx恒成立,求实数m 的取值范围7、已知函数)()(322Zmxxfmm是偶函数,且),在(0)(xf上单调递增(1)求 m 的值,并确定 f(x)的解析式(2))(,)(23log)(2xgxfxxg求的定义域和值域名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 8 页 -8、定 义 在),(),(001-上 的 函 数)(xf及 二 次 函 数)(xg满 足:)(,3)3()1(,1ln)1(2)(2xgggxxxfxf且的最小值是-1(1)求)()(xgxf和的解析式(2)若对于212ln2)(221)(,2,1,2221121xfxaxxgxx均有成立,求实数a 的取值范围(3)设1)(,0),(0),()(xxxgxxfx讨论方程的解的个数情况名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 8 页 -