《2022年初中数学规律探究题的解题方法. .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学规律探究题的解题方法. .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 初中数学规律探究题的解法指导广南县篆角乡初级中学郭应龙新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。在历年的中考或学业水平考试中屡见不鲜,频繁考查,考生大都感到困难重重,无从下手,导致丢分。解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了
2、学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n 表示正整数,从1 开始。2.在数据中,分清奇偶,记住常用表达式。正整数 n-1,n,n+1奇数 2n-3,2n-1,2n+1,2n+3偶数 2n-2,2n,2n+2 3.熟记常见的规律 1、4、9、16.n2 1、3、6、10(1)2n n 1、3、7、152n-1 1+2+3+4+n=(1)2n n 1+3+5+(
3、2n-1)=n2 2+4+6+2n=n(n+1)12+22+32.+n2=16n(n+1)(2n+1)13+23+33.+n3=14n2(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例 1.观察下列等式:112=1-12223=2-23334=3-34445=4-45猜想第几个等式为(用含 n 的式子表示)分析:将等式竖排:112=1-12观察相应位置上变化的数字与序列号223=2-23的对应关系(注意分清正整数的奇偶)334=3-34易观察出结果为:名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 6 页 -2 445=4-45
4、n1nn=n-1nn例 2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729,那么32009的个位数字是。分析:这类问题,主要是通过观察末位数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,易得出本题结果为:3 2.函数法例 3.将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成更小的正三角形,如此继续下去,结果如下表:所剪次数1 2 3 4 n 正三角形个数4 7 10 13 an则 an=(用含 n 的代数式表示)分析:对结果数据做求差处理(相邻两数求差,大数减小数)正三角形个数:4、7、10、
5、13 第一次求差结果相等,用一次函数y=kx+b 第一次求差:3 3 3 代入(1、4)(2、7)解之得:y=3x+1 an=3n+1 例 4.有一组数:1、2、5、10、17、26请观察这组数的构成规律,用你发现的规律确定第8 个数为。分析:对这组数据做求差处理:原数 1 2 5 10 17 26 第一次求差:1 3 5 7 9 第二次求差:2 2 2 2 第二次求差结果相等,同二次函数y=ax2+bx+c 代入(1、1)(2、2)(3、5)解之得 y=x2-2x+2=(x-1)2+1 当=8时,y=50 尝试练习:1.观察下列等式:13=12+21;24=22+22;35=32+23请将你
6、猜想到的规律用含自然数n(n1)的代数式表示出来:。2.观察下列各式:212=21+2;323=32+3;434=43+4;545=54+5设 n 为正整数,用关于n 的等式表示这个规律为。3.观察下列各式:113=213;124=314;135=415请你将猜想到的规律用含正整数n(n 1)的代数式表示出来为。4.已知:2+23=2223;3+38=3238;4+415=42415;5+524=52524,若名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 6 页 -3 10+ba=102ba符合前面式子的规律,则a+b=。5.已知下列等式:13=12;13+23=32;13+2
7、3+33=62;13+23+33+43=102由此规律可推出第n 等式:。6、观 察 下 列 算 式:,请 你 在 观 察 规 律 之 后 并 用 你 得 到 的 规 律 填 空:.1、下面有8 个算式,排成4行 2 列22,22 323,323434,434545,545,(1)同一行中两个算式的结果怎样?(2)算式 200520042005和 200520042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。(5 分)2、你能很快算出22005吗?(5 分)为了解决这个问题,我们考察个位上的数为5 的正整数的平方,任意一个个位数为5 的
8、正整数可写成10n5(n 为正整数),即求2105n的值,试分析1n,2,3这些简单情形,从中探索其规律。通过计算,探索规律:215225可写成10011125;225625可写成10022125;2351225可写成10033125;2452025可写成10044125;2755625可写成 _ 2857225可写成 _ 根据以上规律,试计算2105=名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 6 页 -4 3(5 分)已知32211124;33221129234;(1)猜想填空:(2)计算23+43+63+983+1003 1、观察等式:1342 2,13593 2,13
9、57164 2,13579255 2,猜想:(1)1 357 99;(2)1357(2n-1)_ .(结果用含n 的式子表示,其中n=1,2,3,)。2、观察下面一列数,根据规律写出横线上的数,11;21;31;41;第2003 个数是。二、图形规律探究由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。拆图法例 5如图,由若干火柴棒摆成的正方形,第图用了
10、4 根火柴,第图用了7 根火柴棒,第图用了10根火柴棒,依次类推,第图用根火柴棒,摆第n 个图时,要用根火柴棒。分 析:本 例可 拆 为即1+3=4(根)第 拆 为即1+32=7(根);第图可拆为即 1+33=10(根)由此可知,第图为1+310=31(根),第 n 个图为:(3n+1)根。例 6按如下规律摆放三角形:则第堆三角形的个数为;第(n)堆三角形的个数为。(1)(2)(3)名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 6 页 -5 分析:本例中需要进行比较的因素较多,于是把图拆为横向和纵向两部分,就横向而言,把三角形个数抽出来,就是 3,5,7这是奇数从小到大的排列,
11、其表达式为:2n+1;就纵向而言,发现三角形个数依次增加一个:第堆有2 个,第堆有3 个,第堆有4 个,所以第(n)堆的个数就为(n+1)个。所以第n 堆三角形的总个数为:(n+1)+(2n+1)即(3n+2)个。尝试练习:1.如图 7,图7,图7,图7,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_,第n个“广”字中的棋子个数是_ 2观察图中每一个大三角形中白色三角形的排列规律,则第5 个大三角形中白色三角形有个 3图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形 当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s(用n
12、的代数式表示s)4用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 _ 块,第n个图形中需要黑色瓷砖_块(用含n的代数式表示)5如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是通过对此专题的复习和指导,我想你会有所感悟,有所收获,有所进步.别忘记课后注意巩固训练,展示你的能力,体验成功的快乐!三、课外拓展:1.探索规律:31=3,32=9,33=27,34=81,35=243,36=729那么 32008的个位数字是。2.观察下列等式:71=7,72=49,73=343,74=2041由此可判断71
13、00的个位数字是。3.瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632中得到巴尔末公式,从而打开了光谱奥妙的大门,按此规律第七个数据是。4.已知 a1=11 23+12=23,a2=123 4+13=38,a3=134 5+14=415按此规律,则a99=。第1个第2个第3个n=n=n=(名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 6 页 -6 5.已知11 2=1-12,12 3=12-13,134=13-14,则112+123+134+1(1)n n=;用相同思路探究:11 3+13 5+157+1(21)(21)nn=。6如图 5,每一幅图中有若干个
14、大小不同的菱形,第1 幅图中有1 个,第 2 幅图中有3 个,第 3 幅图中有5 个,则第 4 幅图中有个,第n幅图中共有个7如图,由等圆组成的一组图中,第1 个图由 1 个圆组成,第 2 个图由 7 个圆组成,第 3 个图由 19 个圆组成,按照这样的规律排列下去,则第9 个图形由 _个圆组成8将一些半径相同的小圆按如图所示的规律摆放:第1 个图形有6 个小圆,第2 个图形有10 个小圆,第3 个图形有 16 个小圆,第4 个图形有 24 个小圆,依次规律,第6 个图形有个小圆9用边长为 1cm的小正方形搭成如下的塔状图形,则第 n 次所搭图形的周长是 _cm(用含 n 的代数式表示)。10.如图 10,已知 Rt ABC中,AC=3,BC=4,过直角顶点C作 CA1AB,垂足为A1,再过 A1作 A1C1BC,垂足为C1,过 C1作 C1A2AB,垂足为A2,再过 A2作 A2C2BC,垂足为 C2,这样一直做下去,得到了一组线段CA1,A1C1,12C A,则CA1=,5554CAAC第 1 个图形第 2 个图形第 3 个图形第 4 个图形第 1 幅第 2 幅第 3 幅第 n 幅图 5 第 1 次第 2 次第 3 次第 4 图 10 名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 6 页 -