《数理方程分离变量法.ppt》由会员分享,可在线阅读,更多相关《数理方程分离变量法.ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于数理方程分离变量法现在学习的是第1页,共51页2.1 齐次发展方程的分离变量法齐次发展方程的分离变量法一一 分离变量法简介分离变量法简介研究两端固定的理想弦的自由振动,即定解问题研究两端固定的理想弦的自由振动,即定解问题(,)()()u x tX x T t设设代入上述波动方程和边界条件得代入上述波动方程和边界条件得 20000 0,000()(),0ttxxxx ltttua ux l tuuuxuxx l 20(0)()0()()0XTa X TXT tX l T t方程、边界方程、边界条件均齐次条件均齐次用用 遍除遍除2a XT2TXa TX(0)()0XX l现在学习的是第2页,共
2、51页2TXa TX 两边相等显然是不可能的,除非两边实际上是同一个常两边相等显然是不可能的,除非两边实际上是同一个常数,把这个常数记作数,把这个常数记作-2TXa TX 这可以分离为关于这可以分离为关于X的常微分方程和关于的常微分方程和关于T的常微分方程,且边界条的常微分方程,且边界条件也同样进行分离件也同样进行分离 0(0)0()0XXXX l20Ta T称为固有值(本征值)问题称为固有值(本征值)问题现在学习的是第3页,共51页20,r 1212r xr xyC eC e 120,0rr 12()yCC x 12(cossin)yCxCx 特特 征征 根根通通 解解求方程的通解的步骤为:
3、求方程的通解的步骤为:(1)写出微分方程的写出微分方程的特征方程特征方程 (2)求出特征根求出特征根 ,(3)根据特征根的情况按下表写出所给微分方程根据特征根的情况按下表写出所给微分方程的通解。的通解。0yy 21,rr二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程120,rr 实实根根120,rri 现在学习的是第4页,共51页 1、在在0的情况的情况 方程的解是方程的解是 xCxCxXsincos)(21120sin0CCl只有只有 才能保证才能保证 ,方程有非零解,方程有非零解0sinl20C()sinnnn xXxCl 此时此时再看关于再看关于T 的方程的方程 02222Tlna
4、T于是于是 或或 nl 222nnl1,2,n 称为称为固有值固有值,称为称为固有函数固有函数n()nXx现在学习的是第6页,共51页 这个方程的解这个方程的解()cossinnnnn atn atT tABll 分离变量的形式解分离变量的形式解),(txun)sincos(latnBlatnAnnlxnsin(n=1,2,3,),(txu)sincos(1latnBlatnAnnnlxnsin由叠加原理,一般解为:由叠加原理,一般解为:现在要求出叠加系数现在要求出叠加系数 和和 nAnB满足初始条件满足初始条件 0()tux0()ttux0 xl现在学习的是第7页,共51页 方程左边是傅里叶
5、正弦级数方程左边是傅里叶正弦级数,这就提示我们把右边的展开这就提示我们把右边的展开为傅里叶正弦级数,然后比较傅里叶系数,得为傅里叶正弦级数,然后比较傅里叶系数,得02()sinlnnAdll dlnanBlnsin)(201(,0)sin()nnnu xAxxl1(,0)sin()tnnn anu xBxxll现在学习的是第8页,共51页,则可得原问题的解:,则可得原问题的解:按上述公式计算出系数按上述公式计算出系数 和和nAnB),(txu)sincos(1latnBlatnAnnnlxnsin注:该解称为古典解,在求解中我们假设无穷级数是收敛的。注:该解称为古典解,在求解中我们假设无穷级数
6、是收敛的。如上的方法称为分离变量法,是齐次发展方程求解的一个有效方法。如上的方法称为分离变量法,是齐次发展方程求解的一个有效方法。下面对该方法的步骤进行总结。下面对该方法的步骤进行总结。现在学习的是第9页,共51页2ttxxua u|xx luu0=000|()()tttuxux)()(xXtTu(0)()0XX l2TXaTX20Ta T0XXcossinnnnn atn atTABll2()sin,nnlnnlXx()()nnnuT t Xx()()nnuTt Xx),(txuu固有固有值值(特(特征值征值)问题问题现在学习的是第10页,共51页 分离变量常 微 分 方 程(关 于 X)+
7、边 界 条 件故 有(值)函 数常 微 分 方 程(关 于 T)+初 始 条 件叠 加 系 数本征值通解故有函数偏微分方程偏微分方程 现在学习的是第11页,共51页【解解】杆上温度满足下列泛定方程和定解条件杆上温度满足下列泛定方程和定解条件 2000,0,00,0()txxxxx ltua uxl tuuux试探解试探解(,)()()u x tX x T t代入方程和边界条件得代入方程和边界条件得 固有值问题固有值问题 0(0)0()0XXXX l 【例题例题1】研究细杆导热问题研究细杆导热问题,初始时刻杆的一端温度为零度初始时刻杆的一端温度为零度,另一端跟外界绝热,杆上初始温度为另一端跟外界
8、绝热,杆上初始温度为 ,试求无热源时细杆上试求无热源时细杆上温度的变化。温度的变化。()x和常微分方程和常微分方程20TaT分析:方程与边界条件均为齐次,用分离变量法,根据分离变量法流程,分析如下分析:方程与边界条件均为齐次,用分离变量法,根据分离变量法流程,分析如下现在学习的是第12页,共51页2txxua u|xxx luu0=00|()tux)()(xXtTu(0)()0XX l 2TXaTX20Ta T0XX22 22(21)4()natlnnT tC e(2 1)22(2 1)2(),1,2,sin,nnlnnlnXx()()nnnuT t Xx()()nnuTt Xx),(txuu
9、固有固有值值(特(特征值征值)问题问题现在学习的是第13页,共51页经讨论知,仅经讨论知,仅 时有非零解,且时有非零解,且02cos0Cl1(),0,1,2,32lnn2222221()(21)24nnnll只有只有12()cossinX xCxCx10C 由由 得得(0)0X由由 得得()0X lcos0l于是得固有值和固有函数为于是得固有值和固有函数为由此得由此得现在学习的是第14页,共51页(21)()sin2nnxXxl2222(21)04nTaTl2222(21)4()natlnnT tC e下面求解下面求解得得由叠加原理,得由叠加原理,得2222(21)40(21)(,)sin2n
10、atlnnnxu x tC el现在学习的是第15页,共51页确定系数确定系数 ,由初值条件知由初值条件知 nC0(21)sin()2nnnxCxl)0(lx 02(21)()sin2lnnxCxdxll于是于是如取如取 ,则,则()Axxl12002202(21)22(21)sin(cos)2(21)22(21)8 cos(1)(21)2(21)lnlnAnxAlnxCxdxxllllnllnxAdxnln 现在学习的是第16页,共51页 22 22(21)4222028(21)(,)(1)sin(21)2natnlnAAnxu x tenl从而下列问题从而下列问题 2000,0,00,0t
11、xxxxx ltua uxl tuuAuxl的解为的解为图形如下图形如下:(程序程序:my1)现在学习的是第17页,共51页(a)精确解图(b)瀑布图现在学习的是第18页,共51页2.2 稳定场齐次问题的分离变量法稳定场齐次问题的分离变量法1 矩形区域上拉普拉斯方程矩形区域上拉普拉斯方程【例题例题1】散热片的横截面为矩形。它的一边散热片的横截面为矩形。它的一边 处于较高温处于较高温度度 ,边处于冷却介质中而保持较低的温度边处于冷却介质中而保持较低的温度 ,其他两边其他两边 ,温度保持为零温度保持为零,求解这横截面上的稳定温度分布求解这横截面上的稳定温度分布 .by 0y0 xxa),(yxuU
12、0u【解解】先写出定解问题定解问题先写出定解问题定解问题 0 xxyyuu000(0)xx auuyb00(0)yy buuuUxa方程齐次方程齐次这组边界条件齐次这组边界条件齐次用分离变量法用分离变量法现在学习的是第19页,共51页0 xxyyuu|xx auu0=000|yy buuuU()()uX x Y y(0)()0XX aXYXY0YY0XX()nnyyaannnY yAeB e2(),1,2,()sin,nnannanX xx()()nnnuXx Y y(,)()()nnu x yXx Yy(,)uu x y固有固有值值(特(特征值征值)问题问题现在学习的是第20页,共51页设形
13、式解为:设形式解为:(,)()()u x yX x Y y代入上述泛定方程代入上述泛定方程,得到得到0(0)0()0XXXX a0YY得到固有值问题得到固有值问题和常微分方程和常微分方程得固有值:得固有值:222(1,2,.)nnna现在学习的是第21页,共51页固有函数固有函数:()sinnn xXxa,.)2,1(n()nnyyaannnYyA eB e而而1(,)()sinnnyyaannnn xu x yA eB ea(,)()sinnnyyaannnn xu x yAeBea于是有于是有叠加得叠加得现在学习的是第22页,共51页为确定叠加系数,将为确定叠加系数,将 代入非齐次边界条件
14、代入非齐次边界条件(,)u x y011()sin()sinnnnnnbbaannnn xABuan xA eB eUa将等式右边展开为傅里叶正弦级数将等式右边展开为傅里叶正弦级数,并两边比较系数,得并两边比较系数,得 00022(1(1)sinnannn xuABudxaan 现在学习的是第23页,共51页2(1(1)nnnbbaannUAeB en 联立求解得联立求解得0(1(1)()sh()n bnanUu eAn bna 0(1(1)()sh()n bnanu eUBn bna 现在学习的是第24页,共51页101(,)()sin2(1(1)()shshsinshnnyyaannnnn
15、n xu x yA eB ean ynbyn xUun baaana 故原问题的解为故原问题的解为小结:对矩形域上拉普拉斯方程,只要一组边界条件小结:对矩形域上拉普拉斯方程,只要一组边界条件是齐次的,则可使用分离变量法求解。是齐次的,则可使用分离变量法求解。图形如下图形如下:(程序:(程序:my2)现在学习的是第25页,共51页(a)精确解图(b)瀑布图现在学习的是第26页,共51页【例例2】求解下列问题求解下列问题0 xxyyuu00(0)xx aupuPyb00(0)yy buuuUxa特点:边界条件特点:边界条件 均均非齐次非齐次 让让 和和 分别满足拉普拉斯方程分别满足拉普拉斯方程,并
16、各有并各有一组齐次边界条件,即一组齐次边界条件,即(,)x y(,)w x y000000 xxyyxx ayy bpP000000 xxyyxx ayy bwwwwwuwU(,)(,)(,)u x yx yw x y则则 ,而上面两个定解,而上面两个定解问题分别用例问题分别用例1的方法求解。的方法求解。称为定解问题的分拆。称为定解问题的分拆。现在学习的是第27页,共51页 【例题例题3】带电的云跟大地之间的静电场近似是匀强的,水平架设带电的云跟大地之间的静电场近似是匀强的,水平架设的输电线处在这个静电场之中,导线看成圆柱型,求导线外电场的电的输电线处在这个静电场之中,导线看成圆柱型,求导线外
17、电场的电势。势。【解解】先将物理问题表为定解问题。取圆柱的轴为先将物理问题表为定解问题。取圆柱的轴为z轴轴,物理问题与物理问题与Z轴无关。圆柱面在平面的剖口是圆轴无关。圆柱面在平面的剖口是圆222xya柱外的空间中没有电荷,故满足拉普拉斯方程柱外的空间中没有电荷,故满足拉普拉斯方程 0yyxxuu(在柱外)(在柱外)0222ayxu可以看出,边界条件无法分离变量,只能另辟蹊径可以看出,边界条件无法分离变量,只能另辟蹊径。在极坐标下研究该问题,在极坐标下,上述问题可表示成在极坐标下研究该问题,在极坐标下,上述问题可表示成2 圆形区域问题圆形区域问题现在学习的是第28页,共51页0cosuE)(0
18、1122222auuu0au设分离变数形式的试探解为设分离变数形式的试探解为(,)()()uR 代入拉普拉斯方程,得代入拉普拉斯方程,得2RRR 令令2RRR 此条件是根据电学原此条件是根据电学原理加上的理加上的移项、整理后得:移项、整理后得:2110RRR 现在学习的是第29页,共51页分离为两个常微分方程分离为两个常微分方程 002RRR(自然边界条件,附加)自然边界条件,附加))(cossin(0)AB(0)AeBe BA(0)得固有值和固有函数为得固有值和固有函数为2nn0(0)cossin(0)nnAnAnBnn()n(2)()和和固有值问题解得解得现在学习的是第30页,共51页将本
19、征值代入常微分方程,得到将本征值代入常微分方程,得到欧拉型欧拉型常微分方程常微分方程 220RRn R作代换作代换 则则 ,方程化为,方程化为:telnt2220d Rn Rdt00ln,0(),0nnnnnCDnRCDn于是通解是于是通解是),(uln00DC 1(cossin)nnnnAnBn1(cossin)nnnnCnDn解得解得00,0()0nntntnnCD tnR tC eD en即即现在学习的是第31页,共51页一个傅里叶级数等于零一个傅里叶级数等于零,意味着所有傅里叶系数为零意味着所有傅里叶系数为零,即:即:0011ln(cossin)(cossin)0nnnnnnnnCDa
20、aAnBnaCnDn00ln0,CDa00nnnnnnnna Aa Ca Ba D由此得:由此得:00ln,CDa 22nnnnnnCA aDB a 由条件由条件 得得0au现在学习的是第32页,共51页主要部分是主要部分是 项项,可见在表达式中不应出现高次幂,于是可见在表达式中不应出现高次幂,于是 1101000(1)nnAEBABn最后得柱外的静电势为:最后得柱外的静电势为:2000(,)lncoscosauDEEa 由由 知知0cosuE结合前面系数关系,有结合前面系数关系,有21000(1)nnCE aCDn习题习题6、8现在学习的是第33页,共51页 2.3 非齐次方程的求解非齐次方
21、程的求解 2(,)(0,0)ttxxua uf x txl t000lxxuu0000tttuu设该问题的解为:设该问题的解为:1(,)()sinnnnu x tTtxl例例1 求解有界弦的受迫振动问题(求解有界弦的受迫振动问题()我们已经知道,对应齐次问题的固有函数系为我们已经知道,对应齐次问题的固有函数系为1sinnn xl1(,)()sinnnnf x tf txl又设又设因因 已知,所以已知,所以(,)f x t02()(,)sinlnn xf tf x tdxll 固有函数展开法(又称傅立叶级数法)固有函数展开法(又称傅立叶级数法)现在学习的是第34页,共51页代入非齐次方程和初始条
22、件得:代入非齐次方程和初始条件得:2222()()()(0)0(0)0nnnnnnaT tT tf tlTT001()()sin()(,)()sin()sintnntnnln aT tftdn alln anu x tftdxn all用用Laplace变换求解得:变换求解得:方法总结:方法总结:将未知函数和非齐次项按照对应的齐次问题的固有函将未知函数和非齐次项按照对应的齐次问题的固有函数展开,其展开系数为另一变量的未知函数,代入非齐次方程和初始数展开,其展开系数为另一变量的未知函数,代入非齐次方程和初始条件确定该未知函数。条件确定该未知函数。现在学习的是第35页,共51页2000cossin
23、00()()ttxxxxxx ltttxua uAtluuuxux)0(lx 设:设:0(,)()cosnnnu x tT txl22220()cossincosnnnnanTTxAtxlll【解解】对应齐次问题的固有函数系为对应齐次问题的固有函数系为0cosnn xl代入泛定方程,得代入泛定方程,得于是有于是有例例2 求解有界弦的受迫振动问题(求解有界弦的受迫振动问题()现在学习的是第36页,共51页tATlaTsin1222102222nnTlanT)1(n代入初始条件代入初始条件 00(0)cos()cosnnnnnnTxxxll00(0)cos()cosnnnnnnTxxxll于是:于
24、是:dlTl000)(1)0(dlTl000)(1)0(现在学习的是第37页,共51页当当 时:时:0ndlnlTlnn0cos)(2)0(dlnlTlnn0cos)(2)0(的解为的解为)(tTnttT000)(12222111()(sinsin)cossinAlataT ttaallltlatlal解释解释现在学习的是第38页,共51页推导:推导:对应齐次方程的通解为对应齐次方程的通解为()cossinaaT tCtDtll1设非齐次方程的特解为,解得设非齐次方程的特解为,解得()sinT tBt1()ABal 22于是非齐次方程的通解为于是非齐次方程的通解为()cossinsin()aa
25、AT tCtDttalll122由定解条件由定解条件(0)T11(0)T11得得C1()()lADaal122代入整理即得。代入整理即得。现在学习的是第39页,共51页()cossinnnnn atln atT tln al002222(,)1 +(sinsin)cosu x ttAlataxtaallll2(cossin)cosnnnn atln atnxln all故原问题的解为故原问题的解为解释解释现在学习的是第40页,共51页 2.4 非齐次边界条件问题非齐次边界条件问题 上一节研究了非齐次偏微分方程,齐次边界条件的情况。上一节研究了非齐次偏微分方程,齐次边界条件的情况。现在讨论非齐次
26、边界条件下的情况。现在讨论非齐次边界条件下的情况。【例例1】长为长为 、侧面绝热的均匀细杆,在、侧面绝热的均匀细杆,在 的一端保的一端保l0 x xl0u持恒温持恒温 ,另一端,另一端 有热流为有热流为 的定常热流进入。设杆的定常热流进入。设杆0q0u的初始温度分布是的初始温度分布是 ,求杆上的温度变化,求杆上的温度变化.【解解】物理问题的定解问题物理问题的定解问题200000(,)(,)(0,0)txxxxx ltu x ta ux txltquuuKuu按照叠加原理,将按照叠加原理,将 的定解问题分解为两部分之和,的定解问题分解为两部分之和,(,)u x t现在学习的是第41页,共51页(
27、,)()(,)u x txw x t00qxuK()x满足定解问题满足定解问题000()0(0)xxx lxxlquK即即解得解得(,)w x t满足定解问题满足定解问题2000(,)(,)(0)00txxxxx ltw x ta w x tx lwwqwxK 解释为什么?解释为什么?现在学习的是第42页,共51页2(21)1022208(1)(21)(,)sin(21)2kaktlkq lkxw x teKkl由分离变量法知,其解为由分离变量法知,其解为2(21)100202208(1)(21)(,)sin(21)2kaktlkqq lkxu x txueKKkl由初值条件知由初值条件知2(
28、21)20(21)(,)sin2katlkkkxw x tC el10022082(21)(1)sin2(21)klkqq lkxCxdxlKlKk故故现在学习的是第43页,共51页与与t无关,设无关,设v=v(x)200000(,)(,)(0,0)txxxxx ltu x ta ux txltquuuKuu小结:小结:()x满足定解问题满足定解问题000()0(0)xxx lxxlquK即可边界条件齐次化。即可边界条件齐次化。现在学习的是第44页,共51页2.5固有值问题固有值问题 常微分方程的本征值问题是由齐次边界条件决定的。常微分方程的本征值问题是由齐次边界条件决定的。用分离变量法求解偏
29、微分方程的定解问题时,会得到含有参数用分离变量法求解偏微分方程的定解问题时,会得到含有参数 些参数称为固有值,其对应的方程解称为固有函数。些参数称为固有值,其对应的方程解称为固有函数。的齐次常微分方程和齐次边界条件(或自然边界条件)。这类问题的齐次常微分方程和齐次边界条件(或自然边界条件)。这类问题中的参数依据边界条件只能取某些特定值才会使方程有非零解。这中的参数依据边界条件只能取某些特定值才会使方程有非零解。这()()0(0)0()0XxX xXX l222()sin(1,2,)nnnnnXxCx nll固有值及固有函数:固有值及固有函数:一、一、现在学习的是第45页,共51页1sinnnx
30、l固有函数系:固有函数系:在区间在区间 上正交,即上正交,即0,l00,sinsin,2lnknkxxdxlllnk222()cos(0,1,2,)nnnnnXxCx nll其固有值和固有函数分别为其固有值和固有函数分别为()()0(0)0()0XxX xXX l二、二、现在学习的是第46页,共51页三、三、()()0(0)0()0XxX xXX l其固有值和固有函数分别为其固有值和固有函数分别为 22211()22()sin(0,1,2,)nnnnnXxCx nll0cosnnxl固有函数系:固有函数系:在区间在区间 上正交,即上正交,即0,l00,coscos,2lnknkxxdxllln
31、k现在学习的是第47页,共51页1(21)sin2nnxl固有函数系:固有函数系:在区间在区间 上正交,即上正交,即0,l00,(21)(21)sinsin22,2lnknkxxdxlllnk22211()22()cos(0,1,2,)nnnnnXxCx nll其固有值和固有函数分别为其固有值和固有函数分别为()()0(0)0()0XxX xXX l四、四、现在学习的是第48页,共51页()()0(2)()五、五、2()cossin,(0,1,2,)nnnnnxAnBnn其固有值和固有函数分别为其固有值和固有函数分别为 0(21)cos2nnxl固有函数系:固有函数系:在区间在区间 上正交,即上正交,即0,l00,(21)(21)coscos22,2lnknkxxdxlllnk现在学习的是第49页,共51页0cos,sinnnxnx固有函数系:固有函数系:在区间在区间 上正交,即上正交,即0,2 200,coscos1,nknxkxdxnk20sincos0,0,1,2,nxkxdxn k现在学习的是第50页,共51页感谢大家观看感谢大家观看现在学习的是第51页,共51页