2022年八年级数学-一元二次方程知识点总结及典型习题 .pdf

上传人:C****o 文档编号:38603327 上传时间:2022-09-04 格式:PDF 页数:4 大小:65.36KB
返回 下载 相关 举报
2022年八年级数学-一元二次方程知识点总结及典型习题 .pdf_第1页
第1页 / 共4页
2022年八年级数学-一元二次方程知识点总结及典型习题 .pdf_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《2022年八年级数学-一元二次方程知识点总结及典型习题 .pdf》由会员分享,可在线阅读,更多相关《2022年八年级数学-一元二次方程知识点总结及典型习题 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备精品知识点金老师复习( 2) 一元二次方程(一) 、一元二次方程的概念1理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式02cbxax(a0) ;2正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数0a时,整式方程02cbxax才是一元二次方程。(2)各项的确定(包括各项的系数及各项的未知数). 3一元二次方程的解的定义与检验一元二次方程的解(二) 、一元二次方程的解法1明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2根据方程系数的特点,熟练地选用配

2、方法、开平方法、公式法、因式分解法等方法解一元二次方程;3值得注意的几个问题:(1)开平方法:对于形如nx2或)0()(2anbax的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如nx2的方程的解法:当0n时,nx;当0n时,021xx;当0n时,方程无实数根。(2)配方法:通过配方的方法把一元二次方程转化为nmx2)(的方程,再运用开平方法求解。配方法的一般步骤:移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;“系数化1” :根据等式的性质把二次项的系数化为1;配方:将方程两边分别加上一次项系数一半的平方

3、,把方程变形为nmx2)(的形式;求解:若0n时,方程的解为nmx,若0n时,方程无实数解。(3)公式法:一元二次方程)0(02acbxax的根aacbbx242当042acb时,方程有两个实数根,且这两个实数根不相等;当042acb时,方程有两个实数根,且这两个实数根相等,写为abxx221;当042acb时,方程无实数根. 公式法的一般步骤:把一元二次方程化为一般式;确定cba,的值;代入acb42中计算其值,判断方程是否有实数根;若042acb代入求根公式求值,否则,原方程无实数根。(4)因式分解法:因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因

4、式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。(三) 、根的判别式1了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备精品知识点数取值范围。 (1)=acb42(2)根的判别式定理及其逆定理:对于一元二次方程02cbxax(0a)当时00a方程有实数根;当时00a方程无实数根;从左到右为根的判别式定理;从右到左为根的判别式逆定理。例:求证:方程0)4(2)1(222aaxxa无实数根

5、。(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为0,方程有可能是一元一次方程;如果二次项系数不为0,一元二次方程可能会有两个实数根或无实数根。(四) 、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。3.增长率问题(下降率):在此类问题中,一般有变化前的基数(a) ,增长率(x) ,变化的次数(n) ,变化后的基数(b),这四者之间的关系可以用公式bxan)

6、1(表示。4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。(五)新题型与代几综合题(1)有 100 米长的篱笆材料,想围成一矩形仓库,要求面积不小于600 平方米, 在场地的北面有一堵50 米的旧墙,有人用这个篱笆围成一个长40 米、宽 10 米的仓库,但面积只有400 平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?(2)读诗词解题(列出方程,并估算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位学子算得准,多少年华属周瑜?(3)已知:cba,分别是ABC的三边长, 当0m时,关于x的

7、一元二次方程02)()(22axmmxbmxc有两个相等的实数根,求证:ABC是直角三角形。(4)已知:cba,分别是ABC的三边长,求证:方程0)(222222cxacbxb没有实数根。(5)当m是什么整数时,关于x的一元二次方程0442xmx与0544422mmmxx的根都是整数?(6)已知关于x的方程02212222mxxmxx,其中m为实数, (1)当m为何值时, 方程没有实数根?(2)当m为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。答案: (1)2m(2)21, 1x. (六)相关练习(一)一元二次方程的概念1一元二次方程的项与各项系数把下列方程化为一元二次方程的一般形

8、式,再写出二次项,一次项,常数项:(1)xx3252精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备精品知识点(2)22)3(4)15(aa2应用一元二次方程的定义求待定系数或其它字母的值(1) m为何值时,关于x的方程mxmxmm4)3()2(2是一元二次方程。(2)若分式01872xxx,则x3由方程的根的定义求字母或代数式值(1)关于x的一元二次方程01)1(22axxa有一个根为0,则a(2)已知关于x的一元二次方程)0(02acbxax有一个根为1, 一个根为1, 则cba,cba(二)一元二次方程的解法1开平方

9、法解下列方程:(1)289)3(1692x(2) 0)31(2m2配方法解方程:(1)0522xx(2)3422yy 3公式法解下列方程:(1)2632xx( 2)pp32324因式分解法解下列方程:(1)04542yy(2) 1)5(2)5(2xx(3)02172xx5解法的灵活运用(用适当方法解下列方程):(1)3)(2()2(6xxxx(2) 22)3(144)52(81xx(三)一元二次方程的根的判别式1不解方程判别方程根的情况:(1)4xxx732( 2)xx4)2(32(3)xx545422k为何值时,关于x 的二次方程0962xkx(1)有两个不等的实数根(2)有两个相等的实数根

10、( 3)无实数根3.k为何值时,方程0)3()32()1(2kxkxk有实数根 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备精品知识点(四)一元二次方程的应用1已知直角三角形三边长为三个连续整数,求它的三边长和面积. 2.某印刷厂在四年中共印刷1997 万册书, 已知第一年印刷了342 万册, 第二年印刷了500 万册, 如果以后两年的增长率相同,那么这两年各印刷了多少万册?3某商场销售一批名牌衬衫,平均每天可以售出20 件,每件盈利40 元,为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1 元,商场每天可多售出 2 件,若商场平均每天要盈利 1200 元,每件衬衫应降价多少元?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁