《武汉理工大学电路课程教材.ppt》由会员分享,可在线阅读,更多相关《武汉理工大学电路课程教材.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1. 电压、电流的参考方向,3. 基尔霍夫定律,重点:,第1章 电路模型和电路定律,(circuit models),(circuit laws),2. 电路元件的功率,1.1 电路和电路模型(model),1. 实际电路,功能,a 能量的传输、分配与转换; b 信息的传递与处理。,由电工设备和电气器件按预期目的连接构成的电流的通路。,导线,电池,开关,灯泡,激励:电源或信号源的电压或电流,也称为输入。,响应:由激励在电路各部分产生的电压和电流,也称为输出。,电路分析:在已知电路结构和元件参数的条件下,讨论电路的激励和响应间的关系。,电路理论:研究电路中发生的电磁现象,并用电流、电荷、电压、磁
2、通等物理量描述其过程。,电路理论主要用于计算电路中各器件的端子电流和端子间的电压,并不涉及内部发生的物理过程。,2. 基本概念,反映实际电路部件的主要电磁 性质的理想电路元件及其组合。,导线,电池,开关,灯泡,3. 电路模型 (circuit model),电路图,理想电路元件,有某种确定的电磁性能的理想元件,电路模型,本书讨论的电路不是实际电路,而是其电路模型。,注,同一实际电路部件在不同的应用条件下,其 模型可以有不同的形式,1.2 电流和电压的参考方向 (reference direction),电路中的主要物理量有电压、电流、电荷、磁通、能量、电功率等。在线性电路分析中人们主要关心的物
3、理量是电流、电压和功率。,1. 电流的参考方向 (current reference direction),电流,电流强度,带电粒子有规则的定向运动,单位时间内通过导体横截面的电荷量,方向,规定正电荷的运动方向为电流的实际方向,单位,1kA=103A 1mA=10-3A 1 A=10-6A,A(安培)、kA、mA、A,元件(导线)中电流流动的实际方向只有两种可能:,实际方向,实际方向,A,A,B,B,问题,复杂电路或电路中的电流随时间变化时,电流的实际方向往往很难事先判断,参考方向,i 参考方向,大小,方向,电流(代数量),任意假定一个正电荷运动的方向即为电流的参考方向。,A,B,i 参考方向
4、,i 参考方向,i 0,i 0,实际方向,实际方向,电流的参考方向与实际方向的关系:,A,A,B,B,电流参考方向的两种表示:, 用箭头表示:箭头的指向为电流的参考方向。, 用双下标表示:如 iAB , 电流的参考方向由A指向B。,电压U,2. 电压的参考方向 (voltage reference direction),两点之间的电位之差。,实际电压方向,电位真正降低的方向,问题,复杂电路或交变电路中,两点间电压的实际方向往往不易判别,给实际电路问题的分析计算带来困难。,电压(降)的参考方向,U, 0, 0,U,假设的电位降低方向,电压参考方向的三种表示方式:,(1) 用箭头表示,(2) 用正
5、负极性表示,(3) 用双下标表示,U,U,+,A,B,UAB,如果指定流过元件的电流的参考方向是从标以电压正极性的一端指向负极性的一端,即两者的参考方向一致,则称为关联参考方向。反之,当两者的参考方向不一致时,则称为非关联参考方向。,关联参考方向,非关联参考方向,3. 关联参考方向,i,+,-,+,-,i,U,U,注,(1) 分析电路前必须选定电压和电流的参考方向。,(2) 参考方向一经选定,必须在图中相应位置标注 (包括方向和符号),在计算过程中不得任意改变。,(3)参考方向不同时,其表达式相差一负号,但实际 方向不变。,例,电压电流参考方向如图中所标,问:对A、B两部分电路电压电流参考方向
6、关联否?,答: A 电压、电流参考方向非关联; B 电压、电流参考方向关联。,1.3 电功率和能量,1. 电功率,功率的单位:W (瓦) (Watt,瓦特),能量的单位: J (焦) (Joule,焦耳),单位时间内电场力所做的功。,2. 电路吸收或发出功率的判断,u, i 取关联参考方向,P=ui 表示元件吸收的功率,P0 吸收正功率 (实际吸收),P0 吸收负功率 (实际发出),p = ui 表示元件发出的功率,P0 发出正功率 (实际发出),P0 发出负功率 (实际吸收),u, i 取非关联参考方向,例,求图示电路中各方框所代表的元件消耗或产生的功率。已知: U1=1V, U2= -3V
7、, U3=8V, U4= -4V, U5=7V, U6= -3V I1=2A, I2=1A, I3= -1A,解,1.4 电路元件,1.按与外部连接的端子数目可分为:二端、三端、四端元件等 2.线性元件和非线性元件 3.时不变元件和时变元件 4.无源元件和有源元件,分类,集总参数元件,在任何时刻,流入二端元件的一个端子的电流一定等于从另一个端子流出的电流,且两个端子之间的电压为单值量。,1.5 电阻元件 (resistor),2. 线性定常电阻元件,电路符号,电阻元件,对电流呈现阻力的元件。其伏安关系用ui平面的一条曲线来描述:,任何时刻端电压与其电流成正比的电阻元件。,1. 定义,伏安 特性
8、,ui 关系,R 称为电阻,单位: (欧) (Ohm,欧姆),满足欧姆定律 (Ohms Law),单位,G 称为电导,单位: S(西门子) (Siemens,西门子),u、i 取关联参考方向,伏安特性为一条过原点的直线,(2) 如电阻上的电压与电流参考方向非关联 公式中应冠以负号,注,(3) 说明线性电阻是无记忆、双向性的元件,欧姆定律,(1) 只适用于线性电阻,( R 为常数),则欧姆定律写为,u R i i G u,公式和参考方向必须配套使用!,3. 功率,上述结果说明电阻元件在任何时刻总是消耗功率的。,p u i i2R u2 / R,功率:,4. 电阻的开路与短路,短路,开路,1.6
9、电压源和电流源,其两端电压总能保持定值或一定的时间函数,其 值与流过它的电流 i 无关的元件叫理想电压源。,电路符号,1. 理想电压源,定义,电源两端电压由电源本身决定, 与外电路无关;与流经它的电流方 向、大小无关。,通过电压源的电流由电源及外 电路共同决定。,理想电压源的电压、电流关系,伏安关系,例,外电路,电压源不能短路!,电压源的功率,(1) 电压、电流的参考方向非关联;,发出功率,(2) 电压、电流的参考方向关联;,吸收功率,例,计算图示电路各元件的功率。,解,发出,吸收,吸收,满足:P(发)P(吸),实际电压源也不允许短路。因其内阻小,若短路,电流很大,可能烧毁电源。,实际电压源,
10、考虑内阻,伏安特性,一个好的电压源要求,其输出电流总能保持定值或一定 的时间函数,其值与它的两端电压u 无关的元件叫理想电流源。,电路符号,2. 理想电流源,定义,(1) 电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关,电流源两端的电压由电源及外电路共同决定,理想电流源的电压、电流关系,伏安关系,例,外电路,电流源不能开路!,实际电流源的产生,可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。,电流源的功率,(1) 电压、电流的参考方向非关联;,发出功率,起电源作用,(2) 电压、电流的参考方向关联;,吸收功率
11、,充当负载,例,计算图示电路各元件的功率。,解,发出,发出,满足:P(发)P(吸),实际电流源也不允许开路。因其内阻大,若开路,电压很高,可能烧毁电源。,实际电流源,考虑内阻,伏安特性,一个好的电流源要求,1.7 受控电源 (非独立源) (controlled source or dependent source),电压或电流的大小和方向不是给定的时间函数,而是 受电路中某个地方的电压(或电流)控制的电源,称受控源,电路符号,受控电压源,1. 定义,受控电流源,(1) 电流控制的电流源 ( CCCS ), : 电流放大倍数,根据控制量和被控制量是电压u 或电流i ,受控源可分 四种类型:当被控
12、制量是电压时,用受控电压源表示;当被 控制量是电流时,用受控电流源表示。,2. 分类,四端元件,输出:受控部分,输入:控制部分,g: 转移电导,(2) 电压控制的电流源 ( VCCS ),(3) 电压控制的电压源 ( VCVS ),: 电压放大倍数,(4) 电流控制的电压源 ( CCVS ),r : 转移电阻,例,电路模型,3. 受控源与独立源的比较,(1) 独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。,(2) 独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源只是反映输出端与输入端的受控关系,在电路中不能作为“激励”。,例,
13、求:电压u2。,解,1.8 基尔霍夫定律 ( Kirchhoffs Laws ),基尔霍夫定律包括基尔霍夫电流定律 ( KCL )和基尔霍夫电压定律( KVL )。它反映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。,1. 几个名词,电路中通过同一电流的分支。(b),三条或三条以上支路的连接点称为结点。( n ),b=3,a,n=2,b,(1)支路 (branch),(2) 结点 (node),由支路组成的闭合路径。( l ),l=3,3,(3) 回路(loop),2. 基尔霍夫电流定律 (KCL),令流出为“+”,有:,
14、例,在集总参数电路中,任意时刻,对任意结点流出或流入该结点电流的代数和等于零。,流进的电流等于流出的电流,例,三式相加得:,表明KCL可推广应用于电路中包围多个结点的任一闭合面,明确,(1) KCL是电荷守恒和电流连续性原理在电路中任 意结点处的反映;,(2) KCL是对支路电流的约束,与支路上接的是 什么元件无关,与电路是线性还是非线性无关;,(3)KCL方程是按电流参考方向列写,与电流实际 方向无关。,(2)选定回路绕行方向, 顺时针或逆时针.,U1US1+U2+U3+U4+US4= 0,3. 基尔霍夫电压定律 (KVL),在集总参数电路中,任一时刻,沿任一闭合路径绕 行,各支路电压的代数
15、和等于零。,(1)标定各元件电压参考方向,U2+U3+U4+US4=U1+US1,或:,R1I1+R2I2R3I3+R4I4=US1US4,例,KVL也适用于电路中任一假想的回路,明确,(1) KVL的实质反映了电路遵 从能量守恒定律;,(2) KVL是对回路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,(3)KVL方程是按电压参考方向列写,与电压实际 方向无关。,4. KCL、KVL小结:,(1) KCL是对支路电流的线性约束,KVL是对回路电压的线性约束。,(2) KCL、KVL与组成支路的元件性质及参数无关。,(3) KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)。,(4) KCL、KVL只适用于集总参数的电路。,思考:,3,3,