《高分子化学与物理总结.pdf》由会员分享,可在线阅读,更多相关《高分子化学与物理总结.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.3.单体单元:单体单元: (与单体具有相同的化学组成,只是电子结构不同的原子组合。 )4.4.结构单元:结构单元: (构成高分子主链,并决定主链结构的最小的原子组合。 )5.5.重复结构单元:重复结构单元: (主链上化学组成相同的最小原子组合,有时简称为重复单元或链节。 )1.1.体型缩聚:体型缩聚:多官能单体参加反应,能形成非线性的多支链产物,支化的大分子有可能进一步交联成体型结构的产物,这种凡能形成体型结构缩聚物的缩聚反应,称为体型缩聚。2.2.凝胶现象:凝胶现象:体型缩聚反应在聚合过程中一般表现为反应体系的黏度在聚合初期逐渐增大,当反应进行一定程度后,黏度突然急剧增大,体系转变为具有
2、弹性的凝胶状物质,这一现象称为凝胶化或凝胶现象。3.3.凝胶点:凝胶点:出现凝胶现象时的反应程度(临界反应程度)称为凝胶点。17.17. 转化率转化率 :已转化为聚合物的单体量占起始单体量的百分数18.18. 反应程度:反应程度:参加反应的官能团数目与起始官能团数目的比值偶合终止:偶合终止:两个大分子自由基相互结合生成一个大分子的终止方式,称为偶合终止。歧化终止:歧化终止:歧化终止两个大分子自由基相互间反应,生成两个大分子的终止方式,称为歧化终止。链转移反应:链转移反应:链转移反应是指在聚合过程中,链自由基可能从单体、引发剂、溶剂或大分子上夺取一个原子(大多数为氢原子)而终止,而失去一个原子的
3、分子则成为新的自由基,并能继续进行反应形成新的活性自由基链,使聚合反应继续进行。引发剂效率:引发剂效率:用于引发聚合的引发剂量占引发剂分解总量的百分率。诱导分解:诱导分解:自由基(包括初级自由基、单体自由基、链自由基)向引发剂分子的链转移反应。笼蔽效应:笼蔽效应:引发剂分解产生的初级自由基在与单体反应生成单体自由基之前,发生了副反应而失活这种效应称为笼蔽效应。诱导效应诱导效应: : 有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应6.6.异构化聚合:异构化聚合:阳离子聚合中由于碳正离子的不稳定,异构成更稳定的结构,发生所谓的异构化反应。
4、若异构化反应比链增长更快,则进行异构化聚合。7.7.活性聚合:活性聚合:当单体转化率达到 100%时,聚合仍不终止,形成所具有反应活性聚合物的聚合。8.8.等规度:等规度:表征聚合物的立构规整指数,即有规立聚合物量当的分率。5 5、构型、构型 : :分子链中通过化学键相连接的原子和原子团的排列方式7 7、几何异构、几何异构: :当分子链的双键两侧的碳原子所连接的原子或者集团在空间的排列方式不同时就会形成顺势结构和反式结构,这种结构称为几何异构1010、构型:、构型:分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组;1111、构象:、构象:由于单
5、键的内旋转而产生的分子中原子在空间位置上的变化;1313、内聚能密度:、内聚能密度:单位体积的内聚能,内聚能是指将 1mol 的液体或固体分子气化所需要的能量;1717、结晶度:、结晶度:聚合物中结晶部分的重量或体积对全体重量或体积的百分数;1818、结晶形态:、结晶形态:由晶胞排列堆砌生长而成的晶体大小和几何形态;1919、取向:、取向:聚合物受到外力作用后,分子链和链段沿外力作用方向的择优排列;2020、半结晶时间:、半结晶时间:结晶过程完成了一半的时间;2121、AvramiAvrami 指数:指数:反映聚合物结晶过程中晶核形成机理和晶体生长方式的参数,等于晶体生长的空间维数和成核过程的
6、时间维数之和;(1 1)玻璃化转变:)玻璃化转变:玻璃态和高弹态之间的转变称为玻璃化转变。(2 2)黏流转变:)黏流转变:高弹态向粘流态的转变称为黏流转变。聚聚、共缩聚、共缩聚物。物。(5 5)平衡熔点:)平衡熔点:结晶熔融时晶相和非晶相达5.尼龙66的化学式为5 阴离子聚合的两个特征:1 1、活性聚合;、活性聚合;2 2、到热力学平衡时的熔点即为平衡熔点。*NH(CH2)6NHCO(CH2)4COn*CH2CCHCH2高分子的分子量分布非常窄。高分子的分子量分布非常窄。*n*6.阴离子聚合的动力学特点:快引发,慢增长,快引发,慢增长,无终止。无终止。6.天然橡胶的分子式是CH3 1.自由基聚
7、合是 连锁聚合连锁聚合的一种,至少1、逐步聚合反应包括缩聚反应,逐步加成反缩聚反应,逐步加成反7.阴离子聚合催化剂分为哪两种: 阴离子型阴离子型 、应,一些环状化合物的开环聚合,应,一些环状化合物的开环聚合,Diels-AlderDiels-Alder 加加成反应成反应通过功能基逐步聚合,每步反应速率常数和通过功能基逐步聚合,每步反应速率常数和活性基本相同活性基本相同3、逐步聚合反应从机理上可分为 逐步聚合、逐步聚合、连锁聚合两个,连锁聚合两个,带有同一类型的官能团并可相互反应的单体;带有同一类型的官能团并可相互反应的单体;带有相同的官能团,其本身不能进行缩聚反带有相同的官能团,其本身不能进行
8、缩聚反应,只有同另一类型单体进行反应的单体;应,只有同另一类型单体进行反应的单体;带有不同类型的官能团,他们内部官能团之带有不同类型的官能团,他们内部官能团之间可以进行发生聚合物的单体间可以进行发生聚合物的单体 ;带有不同的官能团,但它们之间不能相互进带有不同的官能团,但它们之间不能相互进行反应,只能同其他类型的单体进行共缩聚反应行反应,只能同其他类型的单体进行共缩聚反应的单体的单体5、缩聚反应按热力学特征分类分为平衡缩聚平衡缩聚 、不平衡缩聚不平衡缩聚按生成聚合物的结构分类分为 线型缩聚、线型缩聚、 体体型缩聚型缩聚按参加反应的单体分类分为均缩聚均缩聚、混缩、混缩链引发反应链引发反应 、 链
9、增长反应、链增长反应、 链终止链终止 、由三个基元反应组成,此外有时还伴有。2.链终止反应有 偶合终止偶合终止 和和 歧化终止歧化终止 两种形式。 6 聚合反应时对引发剂的选择,本体、溶液、悬浮聚合时选用 油溶性油溶性 引发剂,乳液聚合选用 水溶性水溶性 引发剂。7. 单体在进行自由基过程中一般可分为 诱导诱导期、聚合初期、聚合中期、聚合后期期、聚合初期、聚合中期、聚合后期 等几个阶段。17. 自由基引发剂分为:(1)1)偶偶氮氮类类引引发发剂剂(2),(2),有机过氧化物类引发剂有机过氧化物类引发剂 (3). (3).氧化还原体系氧化还原体系. .三类18. 自由基聚合的实施方法主要有 (1
10、)(1)本体聚本体聚合合,(2),(2)溶液聚合溶液聚合,(3),(3)悬浮聚合悬浮聚合,(4),(4)乳液聚合乳液聚合, ,四种.19. 自由基反应特征 (1)1)慢引发慢引发 (2),(2),快增长快增长(3),(3),速终止速终止. .2.能进行阴离子聚合的单体可分为哪四类:带带吸电子基团的烯类单体、带有共轭取代基的烯类吸电子基团的烯类单体、带有共轭取代基的烯类单体、部分环氧化合物及环硫化合物、羰基化合单体、部分环氧化合物及环硫化合物、羰基化合路易斯酸型路易斯酸型球晶在正交偏光显微镜下出现的图象叫 ( (黑十黑十字消光图像字消光图像) )。由于结晶条件不同,高分子在结晶过程中可以形成形态
11、相差极大的晶体,主要包括 (单晶)(单晶)( (球球晶晶)()(纤维晶纤维晶)()(串晶串晶)()(树枝状晶树枝状晶)()(伸直链晶体伸直链晶体) )等高分子结构可以分为(链结构)和(聚集态结构)(链结构)和(聚集态结构) 。链结构分为( 远程结构)和(近程结构)远程结构)和(近程结构) 。根据两种单体单元在共聚物分子链上的排列方式,可将共聚物分为(无规共聚)无规共聚)(交替共聚)(交替共聚)(嵌段共聚)(嵌段共聚) (接枝共聚)(接枝共聚) 。高分子链构型包括( 几何异构)和(旋光异几何异构)和(旋光异构)构) 。(2)高分子运动的特点 运动单元多重性运动单元多重性 、分子运动的时间依赖性、
12、分子运动的温度依赖性。分子运动的时间依赖性、分子运动的温度依赖性。(3)分子运动的运动单元包括 分子链整体分子链整体运动、链段运动、链节、侧基和支链、晶区内的运动、链段运动、链节、侧基和支链、晶区内的分子运动。分子运动。(四、计算题3.3.用用 CarothersCarothers 法计算下列聚合物反应的凝法计算下列聚合物反应的凝体和高分子组成,没有中间产物存在,单体浓度逐例并说明选择该方法的原因。例并说明选择该方法的原因。胶点。胶点。步减少,高分子逐步浓度增加,延长时间主要提高答:本体聚合 PMMA这种方法合成已知: 邻苯二甲酸酐+甘油+乙二醇单体转化率,对分子量和聚合度影响很小。PMMA
13、可以得到杂质少、纯度高、透明性好的成品摩尔比为:(3).少量的阻聚剂(%)足以使自由基聚合终溶液聚合 PVAc这种方法可以易于解:凝胶点计算公式:Pc=2/f止。控制分子量,得到分子量较窄的颗粒或粉状反应则代入有:2.2. 自由基引发剂的种类有哪些每一类引发剂自由基引发剂的种类有哪些每一类引发剂发生与均相或非均相体系,易于控制f=23+2)/(3+=Pc=1.1.求下列混合物的数均分子量,重均分子量求下列混合物的数均分子量,重均分子量和分子量分布系数。和分子量分布系数。组分组分 1 1:质量分数:质量分数= =,相对分子质量,相对分子质量=1*10=1*104 4组分组分 2 2:质量分数:质
14、量分数= =,相对分子质量,相对分子质量=1*10=1*105 5组分组分 3:3:质量分数质量分数= =,相对分子质量,相对分子质量=1*10=1*106 6M4N=(+)/1*10 )+1*105)+1*106)=M456W=*10 )+*10 )+*10 )/+=145000D=Mw/Mn=145000/=M1W1+M2W2+M3W3Mw=W1+W2+W3W1+W2+W3Mn=W1W2W3M1+M2+M3MwD=Mn=五、简答题五、简答题1.1. 简述自由基聚合反应的特征简述自由基聚合反应的特征答:特征: (1)慢引发、快增长、速终止。(2) 整个反应过程中,反应体系仅有单请举一个例子并
15、写出它的化学式。请举一个例子并写出它的化学式。答 : 偶 氮 类 引 发 剂 : 偶 氮 二 异 丁 腈CH3CH3H3CCNNCCH3CNCN有机过氧化物类引发剂:过氧化二苯甲酰OOCOO4.4. 什么是自动加速现象什么是自动加速现象自加速现象因双基终止困难导致聚合速率加快、聚合度增大的现象。5.5.自动加速现象产生的原因是什么自动加速现象产生的原因是什么产生原因体系粘度随转化率提高后,链段重排受到阻碍,活性末端甚至可能被包埋,双基终止困难,终止速率常数下降,转化率达 4050%时,kt 降低可达上百倍,而此时体系粘度还不足以严重妨碍单体扩散,增长速率常数变动不大,因此使kp/kt1/2 增
16、加了近 78 倍,活性链寿命延长十多倍,聚合速率显著增大,分子量也同时迅速增加。10.10. 分别列举四种自由基聚合方法的合成实分别列举四种自由基聚合方法的合成实悬浮聚合 PVC这种方法可以得到较高分子量的物质,同时操作简单安全,成本低,适于大批量应用的高分子有机物的合成乳液聚合氯丁橡胶这种方法可以在水中引发反应进行,而反应则在胶束中进行,可以高速进行,提高反应速率,工业可以连续生产,得到乳液或固体直接使用2.2.比较逐步聚合、自由基聚合、阴离子聚合比较逐步聚合、自由基聚合、阴离子聚合的如下关系。转化率和时间的关系高分子的分的如下关系。转化率和时间的关系高分子的分子量和时间的关系。子量和时间的
17、关系。答:逐步聚合单体很快可以转化为二聚体,三聚体等低聚物。自由基聚合单体转化率随时间呈 S型。阴离子聚合的转化率与时间有如下关系:ln1/(1-C%)=kt.逐步聚合分子量随时间的增长而增长。自由基聚合分子量再很短时间内就可以变得很大,延长时间对分子量贡献很小。阴离子聚合,聚合物分子量随时间的增加而增加,二者有如下关系:ln1/(1-aMn)=k1t5.5.阳离子聚合引发体系阳离子聚合引发体系分大类:强质子酸 路易斯酸6.6.阳离子聚合机理的特点:阳离子聚合机理的特点: 快引发,快增长,易转移,难终止24.24.比较阴离子聚合跟自由基聚合的差异:比较阴离子聚合跟自由基聚合的差异:聚 合自由基
18、聚阴离子聚合反应合弱吸电 子吸电子取代基的烯聚 合基 的 烯 类 单 类单体,共轭单体,易单体体,共轭单体极化为正电件的单体过 氧 化碱金属,有机金属引 发物 , 偶 氮 化 化合物,碳阴离子生成剂 ( 催 化物,氧化还原物,亲核试剂剂)体系活 性自 由 基碳阴离子 C-中心C生成稳 定自由基和稳定供给质子的试剂:阻 聚化 合 物 的 试 水,醇,酸等活泼氢物剂剂 : 对 苯 二 质及 CO2,氧等酚,DPPH不能双基终止。较双 基 终难发生链终止,需加入聚 合 止,特征为慢其他试剂使之终止。一机理引 发 、 快 增般为快引发、慢增长、长、有终止。无终止。聚 合一般 500以下或室温温度802
19、525、对于二元共聚物,根据大分子微结构可、对于二元共聚物,根据大分子微结构可分为分为无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物1 1 分子结构可以分为那些结构层次各结构层分子结构可以分为那些结构层次各结构层次包括那些内容它们对高分子的性能会产生什么次包括那些内容它们对高分子的性能会产生什么影响影响答:高分子的结构高分子的结构层次层次近程结构对高分子的基本性能具有决定性的影响,高分子的近程结构一旦确定,其基本物性也就随之确定。远程结构又称为二级结构,主要涉及分子链的大小以及它们在空间的几何形态。3333、比较链柔性大小并说明理由、比较链柔性大小并说明理由 1、 PPPVCPAN因为CN 极
20、性CI甲基 2、PEPPPS因为取代基苯基的体积 甲基氢3636、如何改善结晶高分子的透明性、如何改善结晶高分子的透明性答: (1)减小高分子结晶度(2)晶区密度和非晶区密度尽可能接近(3)减小晶区尺寸3737、结晶度对高分子性能的影响可从什么方、结晶度对高分子性能的影响可从什么方面讨论面讨论答:力学性能、光学性能、热性能5 5 从结构的角度出发,比较下列各组中聚合从结构的角度出发,比较下列各组中聚合物的性能差异:物的性能差异:高密度聚乙烯与低密度聚乙烯;高密度聚乙烯与低密度聚乙烯;无规立构聚丙烯与全同立构聚丙烯;无规立构聚丙烯与全同立构聚丙烯;聚丙烯腈与碳纤维;聚丙烯腈与碳纤维;答: (1)
21、高密度聚乙烯 HDPE(低压法)是线形大分子,易于结晶,故在密度、熔点、结晶度和硬度方面都高于前者,用于硬塑料、管棒材;低密度聚乙烯 LDPE(高压法) ,由于支化破坏了分子的规整性,使其结晶度大大降低,用于软塑料、薄膜。(2)无规立构聚丙烯立构规整性差,不结晶,无强度;全同立构聚丙烯结构规整,易结晶,熔点高,材料有一定强度。(3)聚丙烯腈由单体丙烯腈经自由基聚合反应而得到,大分子链中的丙烯腈单元以头 -尾方式相连,由于-CN 基极性较大,分子链刚性较强,不易结晶,聚丙烯腈纤维的强度也不高;碳纤维是聚丙烯腈纤维受热后芳构化后形成的梯形大分子,具有优异的耐热性,高强度和高模量。1515 聚合物结
22、晶的充分必要条件是什么将下列聚合物结晶的充分必要条件是什么将下列三组聚合物按结晶难易程度排列成序:三组聚合物按结晶难易程度排列成序:PEPE,PPPP,PVCPVC,PSPS(无规)(无规) ;聚对苯二甲酸乙二醇酯,聚间苯二甲酸乙二醇酯,聚己二酸乙二酯;尼龙6,尼龙 66,尼龙 1010;答:聚合物结晶的必要条件:分子链具有对称性或者立构规整性,对称性越高,规整性越好,越容易进行规则排列,形成高度有序的结晶结构;、聚合物结晶的充分条件:适宜的温度区间和充分的时间。结晶容易程度为:(1)PEPPPVCPS(无规)(2)聚己二酸乙二酯聚对苯二甲酸乙二醇酯(PET)聚间苯二甲酸乙二酯己二酸乙二酯是脂
23、肪链柔性好,而聚间苯二甲酸乙二酯对称性不好。(3)尼龙 6尼龙 66尼龙 1010随着尼龙结构单元中碳原子数量增加,分子链上氢键密度逐渐降低。1111 在不同条件下结晶时聚合物可以形成哪些在不同条件下结晶时聚合物可以形成哪些结晶形态结晶形态 各种结晶形态的特征是什么各种结晶形态的特征是什么答:答:结晶条件不同,高分子晶体在生长过程中可以形成形态相差极大的晶体,其中主要有单晶、球晶、树枝状晶、纤维晶和串晶、伸直链晶体等。各种结晶形态的特征如下:高分子单晶一般只能从极稀高分子溶液(浓度为%)中缓慢结晶时才有可能生成,具有规范几何外形的薄片状晶体;当结晶聚合物从浓溶液中析出或从熔体中冷却结晶时,在不
24、存在应力或流动的情况下,往往形成外观为球体的结晶形态;从高分子溶液中结晶时,如果溶液浓度较大,或者结晶温度较低,或者聚合物分子量太大,聚合物倾向于生成树枝形状的晶体;聚合物在结晶过程中受到了搅拌、拉伸或者剪切等应力作用,高分子链会沿着外力方向伸展,并且平行排列,在适当条件下形成纤维状晶体;在较低温度下,纤维状晶体的表面常会外延出许多片状附晶,形成一种类似于串珠式的结晶形态;聚合物在高温和高压条件下进行熔融结晶可以得到伸直链晶体。1414 结晶对高分子的力学,光学和热性能有何结晶对高分子的力学,光学和热性能有何影响如何改善结晶高分子的透明性影响如何改善结晶高分子的透明性答:结晶度和结晶尺寸均对高
25、聚物的性能有着重要的影响。 (1)力学性能:结晶使塑料变脆(冲击强度下降) ,但使橡胶的抗张强度提高。 (2)光学性能结晶使高聚物不透明,因为晶区与非晶区的界面会发生光散射。减小球晶尺寸到一定程度,不仅提高了强度(减小了晶间缺陷)而且提高了透明性(当尺寸小于光波长时不会产生散射)。 (3)热性能结晶使塑料的使用温度提高.因此可以通过降低结晶度,减少成核剂等方法来改善结晶高分子的透明性。2121 取向对高分子的性能有何影响给出取向对高分子的性能有何影响给出 1212 个个取向在高分子成型加工中应用的例子。驾驶合成取向在高分子成型加工中应用的例子。驾驶合成纤维生产过程中为何要进行牵伸和热定型纤维生
26、产过程中为何要进行牵伸和热定型, ,答: (1)材料的力学性能(拉伸强度,弯曲强度)在取向方向上显著增强,而在垂直于取向方向上则明显下降。在光学性能上,由于折射率在取向方向和垂直方向上有差别。取向材料会出现双折射现象。取向还会提高材料的玻璃化转变温度。对于结晶高分子,取向后材料的结晶度会增大。因此,取向材料的使用温度得到提高。取向在高分子成型加工中应用的例子: HDPC,全同 PP纤维需要有较高的径向强度,所以在合成纤维的过程中一旦受热会发生链段的解取向而导致热收缩,并且在牵伸过程中会引起断裂伸长率下降,弹性变差等问题。同时还要有较好的尺寸稳定性。为此,人们利用链段的取向比大分子链取向容易进行
27、,解取向也比大分子链解取向更快,更容易的特点,在纤维生产工艺中加入了“热定型”工艺。2626、简述球晶的生长过程。、简述球晶的生长过程。 (10 分)答:1,成核:由一个多层片晶形成球晶的晶核。2,片晶生长:片晶逐渐向外生长并不断分叉形成捆束状形态。3,形成球晶:捆束状形态进一步发展,最后填满空间形成球状晶体。4,球晶生长:球晶沿径向方向不断长大,直至与相邻的球晶相遇1515、比较下列聚合物的玻璃化温度、比较下列聚合物的玻璃化温度 TgTg 高低并高低并说明理由说明理由1) PE、PVC、PANTg: PAN PVC PE;取代基极性越大,相互作用力也越大,聚合物的 Tg 就高。2) 聚二甲基
28、硅氧烷、聚甲醛、聚乙烯Tg:聚乙烯 聚甲醛 聚二甲基硅氧烷;主链含有醚键时,取代基间距增大,分子的内旋转容易,Tg 就低。3)聚-丁二烯、天然橡胶、丁苯橡胶Tg:丁苯橡胶 天然橡胶 聚-丁二烯主链结构相似,但取代基越大,内旋转位阻也越大,Tg 就高3838、为了提高结晶高分子的透明性。可采用、为了提高结晶高分子的透明性。可采用什么方法来降低球晶的尺寸,增加透明性和其他什么方法来降低球晶的尺寸,增加透明性和其他特性特性答:采用在成型加工过程中加入成核剂的方法。从分子运动观点解释非晶态高分子三种力学状态及其转变,并且讨论:(1)分子量对高分子温度-形变曲线形状的规律;随着分子量增大,高弹态出现,而
29、且黏流温度Tf 随分子量增加而上升,导致高弹区的长度增大。(2)交联对高分子温度-形变曲线的影响规律;如果对高分子进行适度交联,由于交联点限制了分子链之间的相对滑移,而链段仍可运动,此时只会出现高弹态二没有粘流态。(3)结晶对高分子温度-形变曲线的影响规律。轻度结晶时,主要起物理交联点的作用。重度结晶时,结晶高分子内部的晶区成为贯穿整个材料的连续相,当温度达到非晶区的玻璃化转变温度后,尽管非晶区的链段可以运动,但是晶区内部链段的运动仍被晶格紧紧地束缚,宏观上观察不到有明显的玻璃化转变,当温度升高到熔点时,曲线变化分两种情况:1,试样分子量不太高,TfTm 时,试样先进入高弹态,然后再进一步进入
30、粘流态。1616、试讨论非晶、结晶和交联聚合物的温度、试讨论非晶、结晶和交联聚合物的温度形变曲线的形状。形变曲线的形状。解:非晶态聚合物:曲线上有两个斜率突然变化的区域,出现在较低温度的转变区称为玻璃化转变区,出现在较高温度的转变区称为粘流转变区。结晶态聚合物:它的温度形变曲线上也有玻璃化转变出现,但由于结晶出现,使链段运动受到限制,模量的变化很少,而且在玻璃化温度上并不出现高弹态,由于结晶破坏,链段热运动程度迅速增加,模量才迅速下降。交联聚合物:当交联密度不大时, Tg 的变化不大,这是因为相邻交联点之间的长度大于链段长度,不影响链段活动之故。随着交联度的增大,限制了链段活动性,所以Tg 升
31、高(不熔融)。1717、试从高分子运动的观点说明非晶聚合物、试从高分子运动的观点说明非晶聚合物的三种力学状态和两种转变。的三种力学状态和两种转变。玻璃态:当温度低于特征温度 Tg 时,由于温度低,链段的热与动量不足以克服主链内旋转势垒,链段处于冻结状态,只有侧基、链节、小支链等小单元的局部震动以及键长、键角的微小变化,宏观表现为材料弹性模量很高。玻璃化转变区:达到 T=Tg 时,几乎所有性质都发生突变,从分子运动机理看,在此温度下,由于链段解冻,弹性模量下降3-4 个数量级,而形变迅速增加,许多物理性质也发生相应改变。高弹态:温度在 Tg 以上,但低于另一特征温度 Tf,在这种状态下的聚合物,
32、受较小外力就可以发生很大的形变,而且外力除去后,形变就可以回复,它是链段运动时分子量发生伸长与蜷曲运动的宏观表现。高弹性是由于分子量构象的改变,所以是一种熵弹性,弹性模量只有105-106Pa。粘流转变区:温度上升到粘流温度Tf,由于温度进一步提高,链段沿作用力方向的协同运动不仅使分子链的构象改变,而且还导致大分子重心发生相对位移,聚合物开始呈现流动性。粘流态:温度达 Tf 以上,由于链段剧烈运动,整个分子链的重心发生相对位移,即产生不可逆形变,聚合物呈粘性流体状态,此时弹性模量降到了10 -10 Pa42即产生不可逆形变,聚合物呈粘性流体状态,此时弹性模量降到了104-102Pa七、作图题画出非晶态高分子的温度-形变曲线。形变玻玻璃态璃化转变高弹态黏流转变黏流态TgTm温度