《平行四边形的性质(2)教案 第二课时(4页).doc》由会员分享,可在线阅读,更多相关《平行四边形的性质(2)教案 第二课时(4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-平行四边形的性质(2)教案 第二课时-第 4 页平行四边形的性质(二)教案课题:平行四边形的性质(二)课型:新授课教学目标:1 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3 培养学生的推理论证能力和逻辑思维能力教学重点:平行四边形对角线互相平分的性质,以及性质的应用教学难点:综合运用平行四边形的性质进行有关的论证和计算教具准备:电脑、课件、投影仪教学过程:一、课堂引入1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质: 具有一般四边形的性质(内角和是)
2、 角:平行四边形的对角相等,邻角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分(平行四边形的性质3)二、例习题分析例1(补充) 已知:如图421, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相
3、交于点E、F求证:OEOF,AE=CF,BE=DF证明:在 ABCD中,ABCD,1234又 OAOC(平行四边形的对角线互相平分), AOECOF(ASA)OEOF,AE=CF(全等三角形对应边相等) ABCD, AB=CD(平行四边形对边相等) ABAE=CDCF 即 BE=FD【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由解略例2(教材P85的例2)已知四边形ABCD是平行四边形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的长以及ABCD
4、的面积分析:由平行四边形的对边相等,可得BC、CD的长,在RtABC中,由勾股定理可得AC的长再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得ABCD的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)解略(参看教材P85)三、随堂练习1在平行四边形中,周长等于48, 已知一边长12,求各边的长; 已知AB=2BC,求各边的长; 已知对角线AC、BD交于点O,AOD与AOB的周长的差是10,求各边的长。2如图,ABCD中,AEBD,EAD
5、=60,AE=2cm,AC+BD=14cm,则OBC的周长是_ _cm3ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是_ _四、课后练习1判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD ( )(2)平行四边形两条对角线的交点到一组对边的距离相等 ( )(3)平行四边形的两组对边分别平行且相等 ( )(4)平行四边形是轴对称图形 ( )2在 ABCD中,AC6、BD4,则AB的范围是_ _3在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 4公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的长,并算出绿地的面积191分式的乘除法(一)1、 平行四边形的性质:对边相等、对角相等;性质3:对角线互相平分2、 例习题分析:平行四边形的对边相等、平行四边形的对角线互相平分、全等三角形对应边相等3、练习4、小结