九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版(3页).doc

上传人:1595****071 文档编号:36839980 上传时间:2022-08-29 格式:DOC 页数:3 大小:207KB
返回 下载 相关 举报
九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版(3页).doc_第1页
第1页 / 共3页
九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版(3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版(3页).doc》由会员分享,可在线阅读,更多相关《九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-九年级数学下册 3_6 第2课时 切线的判定及三角形的内切圆教案 (新版)北师大版-第 3 页3.6 直线和圆的位置关系第2课时 切线的判定及三角形的内切圆1掌握切线的判定定理,并会运用它进行切线的证明;(重点)2能灵活选用切线的三种判定方法判定一条直线是圆的切线;(难点)3掌握画三角形内切圆的方法和三角形内心的概念. (重点)一、情境导入下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况二、合作探究探究点一:切线的判定【类型一】 已知直线过圆上的某一个点,证明圆的切线 如图,点D在O的直径AB的延长

2、线上,点C在O上,ACCD,D30,求证:CD是O的切线解析:要证明CD是O的切线,即证明OCCD.连接OC,由ACCD,D30,则AD30,得到COD60,所以OCD90.证明:连接OC,如图,ACCD,D30,AD30.OAOC,ACOA30,COD60,OCD90,即OCCD.CD是O的切线方法总结:一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线变式训练:见学练优本课时练习“课堂达标训练”第6题【类型二】 直线与圆的公共点没有确定时,证明圆的切线 如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长

3、为半径的O与BC相切于点M.求证:CD与O相切解析:连接OM,过点O作ONCD于点N,用正方形的性质得出AC平分角BCD,再利用角平分线的性质得出OMON即可证明:连接OM,过点O作ONCD于点N,O与BC相切于点M,OMBC.又ONCD,O为正方形ABCD对角线AC上一点,OMON,CD与O相切方法总结:如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径变式训练:见学练优本课时练习“课堂达标训练”第5题【类型三】 切线的性质和判定的综合应用 如图,在RtABC中,C90,BE平分ABC交AC于点E,点D在AB上,DEEB.(1)求证:AC是BDE的外接圆的

4、切线;(2)若AD2,AE6,求EC的长解析:(1)取BD的中点O,连接OE,如图,由BED90,可得BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,再证明OEBC,得到AEOC90,可得结论;(2)设O的半径为r,根据勾股定理和平行线分线段成比例定理,可求答案(1)证明:取BD的中点O,连接OE,如图所示,DEEB,BED90,BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心BE平分ABC,CBEOBE.OBOE,OBEOEB,OEBCBE,OEBC,AEOC90,OEAE,AC是BDE的外接圆的切线;(2)解:设O的半径为r,则OAODDAr2,OEr.在RtAEO中,有AE

5、2OE2AO2,即62r2(r2)2,解得r2.OEBC,即,CE3.方法总结:经过半径的外端且垂直于这条半径的直线是圆的切线要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可变式训练:见学练优本课时练习“课后巩固提升”第6题探究点二:三角形的内切圆【类型一】 利用三角形的内心求角的度数 如图,O内切于ABC,切点D、E、F分别在BC、AB、AC上已知B50,C60,连接OE,OF,DE,DF,那么EDF等于()A40B55C65D70解析:ABC180,B50,C60,A70.O内切于ABC,切点分别为D、E、F,OEAOFA90,EOF360AOEAOFA11

6、0,EDFEOF55.故选B.方法总结:解决本题的关键是理解三角形内心的概念,求出EOF的度数变式训练:见学练优本课时练习“课堂达标训练”第10题【类型二】 求三角形内切圆半径 如图,RtABC中,C90,AC6,CB8,则ABC的内切圆半径r为()A1 B2 C1.5 D2.5解析:C90,AC6,CB8,AB10,ABC的内切圆半径r2.故选B.方法总结:记住直角边为a、b,斜边为c的三角形的内切圆半径为,可以大大简化计算变式训练:见学练优本课时练习“课后巩固提升”第2题【类型三】 三角形内心的综合应用 如图,I是ABC的内心,AI的延长线交边BC于点D,交ABC的外接圆于点E.(1)BE

7、与IE相等吗?请说明理由(2)如图,连接BI,CI,CE,若BEDCED60,猜想四边形BECI是何种特殊四边形,并证明你的猜想解析:(1)连接BI,根据I是ABC的内心,得出12,34,再根据BIE13,IBE54,而512,得出BIEIBE,即可证出IEBE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形解:(1)BEIE.理由如下:如图,连接BI,I是ABC的内心,12,34.BIE13,IBE54,而512,BIEIBE,BEIE;(2)四边形BECI是菱形证明如下:BEDCED60,ABCACB60,BECE.I是ABC的内心,4ABC30,ICDACB30,4ICD,BIIC.由(1)证得IEBE,BECEBIIC,四边形BECI是菱形方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理三、板书设计切线的判定及三角形的内切圆1切线的判定方法2三角形的内切圆和内心的概念本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导、学生为主体的教学原则.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁