《高中立体几何大题题.doc》由会员分享,可在线阅读,更多相关《高中立体几何大题题.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(2012江西省)(本小题满分12分)如图,在梯形ABCD中,ABCD,E,F是线段AB上的两点,且DEAB,CFAB,AB=12,AD=5,BC=4,DE=4.现将ADE,CFB分别沿DE,CF折起,使A,B两点重合及点G,得到多面体CDEFG.(1) 求证:平面DEG平面CFG;(2)求多面体CDEFG的体积。【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得又因为,可得,即所以平面DEG平面CFG.(2)过G作GO垂直于EF,GO 即为四棱锥G-EFCD的高,所以所求体积为2012,山东(19) (本小题满分12分)如图,几何体是四棱锥,为
2、正三角形,.()求证:;()若,M为线段AE的中点,求证:平面.解:设中点为O,连接OC,OE,则由知,又已知,所以平面OCE.所以,即OE是BD的垂直平分线,所以.(II)取AB中点N,连接,M是AE的中点,是等边三角形,.由BCD120知,CBD30,所以ABC60+3090,即,所以NDBC,所以平面MND平面BEC,故DM平面BEC.2012浙江20(本题满分15分)如图,在侧棱锥垂直底面的四棱锥中, 的中点,F是平面及直线的交点。证明: 求及平面所成的角的正弦值。解析:本题主要考查空间点、线、面位置关系,线面所成角等基础知识,同时考查空间想象能力和推理认证能力。 因为所以 又因为所以
3、 所以 因为所以 又因为 在矩形的中点, 即 所以 设及交点为,连接 由知所以所成的角在矩形在直角中,所以及平面所成的角的正弦值是(2010四川)18、(本小题满分12分)已知正方体中,点M是棱的中点,点是对角线的中点,()求证:OM为异面直线及的公垂线;()求二面角的大小;解:连接AC,取AC中点K,则K为BD中点,连接OK,因为点M是棱的中点,点是的中点,,AM,. 由,得. 因为,所以平面 ,. 又及异面直线和都相交,故为异面直线和的公垂线。 (5分) ()取的中点N,连接MN,则MN平面,过点N作NH于H,连接MH,则由三垂线定理得 ,从而为二面角的平面角。设,则,在中,.故二面角的大
4、小为。 (12分)2010辽宁文(19)(本小题满分12分) 如图,棱柱的侧面是菱形,()证明:平面平面;()设是上的点,且平面,求的值。 2012辽宁(18)(本小题满分12分)如图,直三棱柱,AA=1,点M,N分别为和的中点。 ()证明:平面; ()求三棱锥的体积。(椎体体积公式V=Sh,其中S为地面面积,h为高)【答案及解析】2012,北京(16)(本小题共14分)如图,在中,分别为,的中点,点为线段上的一点,将沿折起到的位置,使,如图()求证:/平面;()求证:;()线段上是否存在点,使平面?说明理由解:()因为,分别为,的中点,所以/又因为平面,所以/平面平面()由已知得且/,所以所
5、以,所以平面而平面,所以又因为,所以平面所以()线段上存在点,使平面理由如下:如图,分别取,的中点,则/又因为/,所以/所以平面即为平面由()知,平面,所以又因为是等腰三角形底边的中点,所以所以平面从而平面故线段上存在点,使得平面2012天津17.(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,ADPD,BC=1,PC=2,PD=CD=2.(I)求异面直线PA及BC所成角的正切值;(II)证明平面PDC平面ABCD;(III)求直线PB及平面ABCD所成角的正弦值。18(本题满分12分)如图,已知直三棱柱ABCA1B1C1, , ,E、F分别是棱CC1、AB中点 (1)判
6、断直线CF和平面AEB1的位置关系,并加以证明; (2)求四棱锥AECBB1的体积(1)解:CF/平面AEB1, 2分证明如下:Zxxk取AB1的中点G,联结EG,FG分别是棱AB、AB1中点 4分又 四边形FGEC是平行四边形 又平面AEB,平面AEB1, 平面AEB1。 6分 (2)解:三棱柱ABCA1B1C1是直棱柱,平面ABC, 又平面ABC 平面ECBB1 是棱CC1的中点, 12分(本小题满分12分) 如图,三棱锥ABPC中,APPC,ACBC,M为AB中点,D为PB中点,且PMB为正三角形.()求证:DM/平面APC;()求 证:平面ABC平面APC;()若BC=4,AB=20,
7、求三棱锥DBCM的体积. 解:()M为AB中点,D为PB中点,MD/AP, 又MD平面ABCDM/平面APC 3分 ()PMB为正三角形,且D为PB中点。MDPB 又由()知MD/AP, APPB 又已知APPC AP平面PBC,APBC, 又ACBC BC平面APC, 平面ABC平面PAC 8分()AB=20MB=10 PB=10又BC=4,又MDVD-BCM=VM-BCD=12分【2012高考全国文19】(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥中,底面为菱形,底面,是上的一点,。()证明:平面;()设二面角为,求及平面所成角的大小。 解析:【命题意图】本试题主要是考查了
8、四棱锥中关于线面垂直的证明以及线面角的求解的运用。从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。解:设,以为原点,为轴,为轴建立空间直角坐标系,则设。()证明:由得, 所以,所以,。所以,,所以平面;() 设平面的法向量为,又,由得,设平面的法向量为,又,由,得,由于二面角为,所以,解得。 所以,平面的法向量为,所以及平面所成角的正弦值为,所以及平面所成角为.27.【2012高考安徽文19】(本小题满分 12分)如图,长方体中,底面是正方形,是的中点,是棱上任意一点。()证明: ;()如果=2,=,,,求 的长。【解析】(I)连接,共面 长方体中,底面是正
9、方形 面 ()在矩形中, 得:【2012高考四川文19】(本小题满分12分) 如图,在三棱锥中,点在平面内的射影在上。()求直线及平面所成的角的大小;()求二面角的大小。命题立意:本题主要考查本题主要考查直线及平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力.解析(1)连接OC. 由已知,所成的角设AB的中点为D,连接PD、CD.因为AB=BC=CA,所以CDAB.因为等边三角形,不妨设PA=2,则OD=1,OP=, AB=4.所以CD=2,OC=.在Rttan.6分(2)过D作DE于E,连接CE. 由已知可得,CD平面PAB.据三垂线定理
10、可知,CEPA,所以,.由(1)知,DE=在RtCDE中,tan故 12分点评本题旨在考查线面位置关系和二面角的基础概念,重点考查思维能力和空间想象能力,进一步深化对二面角的平面角的求解.求解二面角平面角的常规步骤:一找(寻找现成的二面角的平面角)、二作(若没有找到现成的,需要引出辅助线作出二面角的平面角)、三求(有了二面角的平面角后,在三角形中求出该角相应的三角函数值).【2012高考天津文科17】(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,ADPD,BC=1,PC=2,PD=CD=2.(I)求异面直线PA及BC所成角的正切值;(II)证明平面PDC平面ABCD;(
11、III)求直线PB及平面ABCD所成角的正弦值。【解析】(I)是及所成角 在中, 异面直线及所成角的正切值为(II)面 面 平面平面(III)过点作于点,连接 平面平面面是直线及平面所成角 在中, 在中, 得:直线及平面所成角的正弦值为【2012高考新课标文19】(本小题满分12分)如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB=90,AC=BC=AA1,D是棱AA1的中点()证明:平面BDC1平面BDC()平面BDC1分此棱柱为两部分,求这两部分体积的比.CBADC1A1解析:本题主要考查空间线线、线面、面面垂直的判定及性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题
12、.解:()由题设知BC,BCAC,,面, 又面,,由题设知,=,即,又, 面, 面,面面;()设棱锥的体积为,=1,由题意得,=,由三棱柱的体积=1,=1:1, 平面分此棱柱为两部分体积之比为1:1.【2102高考北京文16】(本小题共14分)如图1,在RtABC中,C=90,D,E分别为AC,AB的中点,点F为线段CD上的一点,将ADE沿DE折起到A1DE的位置,使A1FCD,如图2。(I)求证:DE平面A1CB;(II)求证:A1FBE;(III)线段A1B上是否存在点Q,使A1C平面DEQ?说明理由。解析:本题第二问是对基本功的考查,对于知识掌握不牢靠的学生可能不能顺利解决。第三问的创新
13、式问法,难度比较大。解:(1)因为D,E分别为AC,AB的中点,所以DEBC.又因为DE平面A1CB,所以DE平面A1CB.(2)由已知得ACBC且DEBC,所以DEAC.所以DEA1D,DECD.所以DE平面A1DC.而A1F 平面A1DC,所以DEA1F.又因为A1FCD,所以A1F平面BCDE.所以A1FBE(3)线段A1B上存在点Q,使A1C平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQBC.又因为DEBC,所以DEPQ.所以平面DEQ即为平面DEP.由(2)知DE平面A1DC,所以DEA1C.又因为P是等腰三角形DA1C底边A1C 的中点,所以A1CDP,所以A
14、1C平面DEP,从而A1C平面DEQ.故线段A1B上存在点Q,使得A1C平面DEQ.【2012高考陕西文18】(本小题满分12分)直三棱柱ABC- A1B1C1中,AB=A A1 ,=()证明;()已知AB=2,BC=,求三棱锥的体积【解析】()如图,连结, 是直三棱柱,=, 平面,故 又,四边形是正方形, ,又, 平面,故 (), 由()知,平面, S=【2012高考辽宁文18】(本小题满分12分) 如图,直三棱柱,AA=1,点M,N分别为和的中点。 ()证明:平面; ()求三棱锥的体积。(椎体体积公式V=Sh,其中S为地面面积,h为高)解析:本题以三棱柱为载体主要考查空间中的线面平行的判定
15、、棱锥体积的计算,考查空间想象能力、推理论证能力、运算求解能力,难度适中。【解析】(1)(法一)连结,由已知三棱柱为直三棱柱,所以为中点.又因为为中点所以,又平面 平面,因此 6分(法二)取的中点为P,连结MP,NP,分别为和的中点, MP,NP,MP面,NP面, , 面MPN面,MN面, MN面.()(解法一)连结BN,由题意,面面=,面NBC, =1, .(解法2) 【2012高考江苏16】(14分)如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点求证:(1)平面平面; (2)直线平面【考点】直线及平面、平面及平面的位置关系。【解析】(1)要证平面平面,只要证平面上的平面即可
16、。它可由已知是直三棱柱和证得。 (2)要证直线平面,只要证平面上的即可。【答案】证明:(1)是直三棱柱,平面。 又平面,。 又平面,平面。 又平面,平面平面。 (2),为的中点,。 又平面,且平面,。 又平面,平面。 由(1)知,平面,。 又平面平面,直线平面【2102高考福建文19】(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。(1) 求三棱锥A-MCC1的体积;(2) 当A1M+MC取得最小值时,求证:B1M平面MAC。分析:本题考查的知识点为棱锥的体积,和垂直的判定。解答:(I)点到面的距离为 得:三棱锥的体积(II)将矩形饶按逆时针旋转展开,及矩形共面 ,当且仅当点是棱的中点时,取得最小值 在中, 得: 同理:面23 / 23