《探究圆锥曲线中的存在性问题(16页).doc》由会员分享,可在线阅读,更多相关《探究圆锥曲线中的存在性问题(16页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-探究圆锥曲线中的存在性问题-第 17 页探究圆锥曲线中的存在性问题圆锥曲线是解析几何的核心内容,是中学数学的重点、难点,是高考命题的热点之一,各种解得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了解题方法在本章题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题的形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2010年高考对本讲的考察,仍将以以下两类题型为主1求曲线(
2、或轨迹)的方程。对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2与圆锥曲线有关的最值(或极值)和取值范围问题,圆锥曲线中的定值、定点问题,探究型的存在性问题。这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、平面向量、函数、不等式、三角函数知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存
3、在这样的点”的问题,也就是是否存在定值定点定直线的问题。今天,我就圆锥曲线中的存在性问题从五个方面给大家做一个分享,也希望能给大家带来一点点的启示。一、是否存在这样的常数例1(2007宁夏理19题)在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和(I)求的取值范围;(II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由解:()由已知条件,直线的方程为,代入椭圆方程得整理得 直线与椭圆有两个不同的交点和等价于,解得或即的取值范围为()设,则,由方程,又而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数
4、xAy112MNBO练习1:(08陕西卷20)(本小题满分12分)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点()证明:抛物线在点处的切线与平行;()是否存在实数使,若存在,求的值;若不存在,说明理由解法一:()如图,设,把代入得,由韦达定理得,点的坐标为设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,即()假设存在实数,使,则,又是的中点,由()知轴,又,解得即存在,使解法二:()如图,设,把代入得由韦达定理得,点的坐标为,抛物线在点处的切线的斜率为,()假设存在实数,使由()知,则,解得即存在,使练习2.直线 与曲线相交于P、Q 两点。(1) 当 a为何值时,
5、;(2) 是否存在实数a,使得以PQ为直径的圆经过原点O?若存在,求出的值,若不存在,请说明理由。解:(1)联立方程,即,设P、Q两点的坐标为,所以,化简得即为所求。(3) 假设存在实数a,使得以PQ为直径的圆经过原点O,二、是否存在这样的点例2.(2009全国卷)(本小题满分12分)已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为 (I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关
6、系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。解:()设 当的斜率为1时,其方程为到的距离为 ,故 , , 由 ,得 ,=()C上存在点,使得当绕转到某一位置时,有成立。由 ()知椭圆C的方程为+=6. 设假设上存在点P,且有成立,则,整理得 故 将 于是 , =, , 代入解得,此时于是=, 即 因此, 当时, ; 当时, 。()当垂直于轴时,由知,C上不存在点P使成立。综上,C上存在点使成立,此时的方程为.例3.(2009福建卷)(本小题满分14分)已知直线经过椭圆 的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分
7、别交于两点。 (I)求椭圆的方程; ()求线段MN的长度的最小值; ()当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由(I)由已知得,椭圆的左顶点为上顶点为 故椭圆的方程为()直线AS的斜率显然存在,且,故可设直线的方程为,从而由得0设则得,从而 即又,由得 故又 ,当且仅当,即时等号成立 时,线段的长度取最小值()由()可知,当取最小值时, 此时的方程为 要使椭圆上存在点,使得的面积等于,只须到直线的距离等于,所以在平行于且与距离等于的直线上。设直线,则由解得或 练习:1.(2008湖北卷20题)(本小题满分12分)已知双曲线的左、右
8、焦点分别为,过点的动直线与双曲线相交于两点(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由解:由条件知,设,解法一:(I)设,则,由得即于是的中点坐标为当不与轴垂直时,即又因为两点在双曲线上,所以,两式相减得,即将代入上式,化简得当与轴垂直时,求得,也满足上述方程所以点的轨迹方程是(II)假设在轴上存在定点,使为常数当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以,于是因为是与无关的常数,所以,即,此时=当与轴垂直时,点的坐标可分别设为,此时故在轴上存在定点,使为常数练习2.(08山东卷22)
9、(本小题满分14分)如图,设抛物线方程为x2=2py(p0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.()求证:A,M,B三点的横坐标成等差数列;()已知当M点的坐标为(2,-2p)时,求此时抛物线的方程;()是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.()证明:由题意设由得,则 所以因此直线MA的方程为直线MB的方程为所以 由、得因此,即所以A、M、B三点的横坐标成等差数列.()解:由()知,当x0=2时, 将其代入、并整理得:所以x1、x2是方程的两根,因此又
10、所以由弦长公式得又,所以p=1或p=2,因此所求抛物线方程为或()解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2), 则CD的中点坐标为设直线AB的方程为由点Q在直线AB上,并注意到点也在直线AB上,代入得若D(x3,y3)在抛物线上,则因此x3=0或x3=2x0. 即D(0,0)或(1)当x0=0时,则,此时,点M(0,-2p)适合题意.(2)当,对于D(0,0),此时又ABCD,所以即矛盾.对于因为此时直线CD平行于y轴,又所以,直线AB与直线CD不垂直,与题设矛盾,所以时,不存在符合题意的M点.综上所述,仅存在一点M(0,-2p)适合题意.练习3.(2007广东理18)
11、 (本小题满分14分)在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点椭圆与圆的一个交点到椭圆两焦点的距离之和为 (1)求圆的方程; (2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长若存在,请求出点的坐标;若不存在,请说明理由解: (1)设圆心坐标为(m,n)(m0),则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2 即=4 又圆与直线切于原点,将点(0,0)代入得 ,m2+n2=8 联立方程和组成方程组解得, 故圆的方程为(x+2)2+(y-2)2=8 (2)=5,a2=25,则椭圆的
12、方程为其焦距c=4,右焦点为(4,0),那么=4。要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于的长度4,我们可以转化为探求以右焦点F为顶点,半径为4的圆(x4)2+y2=8与(1)所求的圆的交点数。通过联立两圆的方程解得x=,y=即存在异于原点的点Q(,),使得该点到右焦点F的距离等于的长。三、是否存在这样的直线例4.(2007湖北理19)(本小题满分12分)NOACByx在平面直角坐标系中,过定点作直线与抛物线()相交于两点(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明
13、理由(此题不要求在答题卡上画图)解析:本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力解法1:()依题意,点的坐标为,可设,直线的方程为,与联立得消去得由韦达定理得,于是当时,()假设满足条件的直线存在,其方程为,的中点为,与为直径的圆相交于点,的中点为,则,点的坐标为NOACByxl,令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线解法2:()前同解法1,再由弦长公式得又由点到直线的距离公式得从而,当时,()假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入得,则设直线与以为直径的
14、圆的交点为,则有令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线练习1.已知双曲线方程为,问:是否存在过点M(1,1)的直线,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由。解:显然x=1不满足条件,设.联立和,消去y得,由0,得k,由M(1,1)为PQ的中点,得,解得,这与0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。解:(1)因为
15、椭圆E: (a,b0)过M(2,) ,N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则=,即要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求
16、方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系五、是否存在这样的最值例7 (2009年浙江卷)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为 (I)求椭圆的方程; (II)设点在抛物线:上,在点处的切线与交于点当线段的中点与的中点的横坐标相等时,求的最小值解析:(I)由题意得所求的椭圆方程为, (II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则, 设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将
17、代入不等式成立,因此的最小值为1掌握研究解析几何问题的基本方法近几年解析几何的考题在难度、计算的复杂程度等方面都有所下降,突出对解析几何基本思想和基本方法的考查,重点要掌握解析几何的一些基本方法来解决问题,解析几何中解题的基本方法有解析法、待定系数法、变换法、参数法等方法课堂教学中选择例题要突出题目的普遍性,解题方法要具有代表性,即通性通法所以在复习时应做到:1牢固掌握圆锥曲线定义 圆锥曲线定义反映了圆锥曲线的本质属性,是构建有关知识网络的基础。同时,定义直接用于解题常常使一些看似很难解决的问题变得简单。 2重视基础知识,基本题型的复习 (1)注意课本典型例题、习题的延伸 教材中的例题、习题虽
18、然大多比较容易,但其解法往往具有示范性,可延伸性,适当地编拟题组进行复习训练,有利于系统地掌握知识,融会贯通。如教材中题:“过抛物线y2=2px焦点的一条直线和抛物线相交,两个交点的纵坐标为y1,y2,求证y1y2=-p2。” 给出的结论是关于抛物线焦点弦的一条重要性质,而其证明方法也是解决有关直线与圆锥曲线的位置关系问题的最基本最典型的方法。 (2)注意转化条件,优化解题方法 解析几何中有一些基本问题,如两直线垂直的证明、求弦的中点、弦长的计算等等,对这些问题的处理方法是熟知的。但有不少题目,所给的条件无法直接使用,或者使用起来比较困难,此时,可考虑对条件进行适当的转化,使解题过程纳入到学生
19、所熟悉的轨道。 3重视判别式的作用 有关直线与圆锥曲线的位置关系问题,通常都是利用一元二次方程来解决的。其中,根的判别式往往起着关键的作用。4强化数学思想方法的训练和运用 (1)函数与方程思想 解析几何的研究对象和方法决定了它与函数、方程的“不解之缘”,很多解析几何问题实际上就是建立方程后研究方程的解或建立函数后研究函数的性质。(2)分类讨论思想解析几何中,有些公式,性质是有适用条件的,解题时必须注意分类讨论、区别处理。例如直线方程的点斜式、斜截式中斜率必须存在,截距式只适用在两轴上的截距存在且不为零的情况,两点式不适用于与坐标轴垂直的直线。(3)数形结合思想解析几何的本质就是将“数”与“形”有机地联系起来,曲线的几何特征必然在方程、函数或不等式中有所反映,而函数、方程或不等式的数字特征也一定体现出曲线的特性。