机械工程测试技术基础知识点总结(7页).doc

上传人:1595****071 文档编号:36377872 上传时间:2022-08-26 格式:DOC 页数:7 大小:196.50KB
返回 下载 相关 举报
机械工程测试技术基础知识点总结(7页).doc_第1页
第1页 / 共7页
机械工程测试技术基础知识点总结(7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《机械工程测试技术基础知识点总结(7页).doc》由会员分享,可在线阅读,更多相关《机械工程测试技术基础知识点总结(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。这些物理量就是 信号 ,其中目前应用最广泛的是电信号。2、 信号的时域描述,以 时间t 为独立变量;而信号的频域描述,以 频率f 为独立变量。3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。4、 非周期信号包括 准周期 信号和 瞬态非周期 信号。5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。6、 对信号的双边谱而言,实频谱(幅频谱)总是 偶 对称,虚频谱(相频谱)总是 奇 对称。(二)判断对错题(用或表示)1、 各态历经随机过程一

2、定是平稳随机过程。( Y )2、 信号的时域描述与频域描述包含相同的信息量。( Y)3、 非周期信号的频谱一定是连续的。( X )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。( X )5、 随机信号的频域描述为功率谱。( Y )(三)简答和计算题1、 求正弦信号的绝对均值|x|和均方根值xrms。2、 求正弦信号的均值,均方值,和概率密度函数p(x)。3、 求指数函数的频谱。4、 求被截断的余弦函数的傅立叶变换。5、 求指数衰减振荡信号的频谱。-第 7 页-第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为,输入信号,则输出信号的频率为 ,幅值 ,相位 。2、 试求传

3、递函数分别为和的两个环节串联后组成的系统的总灵敏度。3、 为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法 。4、 当测试系统的输出与输入之间的关系为时,该系统能实现 测试。此时,系统的频率特性为 。5、 传感器的灵敏度越高,就意味着传感器所感知的 被测量 越小。6、 一个理想的测试装置,其输入和输出之间应该具有 线性 关系为最佳。(二)选择题1、 不属于测试系统的静特性。(1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数2、 从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡3、 两环节的相频特性各为和,则两环

4、节串联组成的测试系统,其相频特性为 。(1) (2) (3)(4)4、 一阶系统的阶跃响应中,超调量 。(1)存在,但5 (2)存在,但2fh 。4、 如果一个信号的最高频率为50Hz,为了防止在时域采样过程中出现混叠现象,采样频率应该大于 100 Hz。5、 若x(t)是均值为ux为零的宽带随机信号其自相关函数=0时Rx() x2 ,时Rx() 0 。6、 相干函数 用于评价系统的输出信号和输入信号之间的因果性。7、 若某一信号的自相关函数为,则该信号的均方值为= A ,均方根值为xrms= A的根次 。8、 最常用的功率谱估计方法为 周期图法 。9、 为信号的 功率密度 沿频率轴的分布,称

5、为 能谱 。10、 巴塞伐尔定理表示在 时域 中计算的信号总能量,等于在 频域 中计算的信号总能量。(二)判断对错题(用或表示)1、 频率分辨力越高,则泄漏误差越小。( X)2、 A/D转换器的位数越多,则量化误差越小。( Y)3、 对于周期信号,经整周期采样后,可完全避免栅栏效应。( Y )4、 窗函数频谱的主峰瓣宽度越窄,旁瓣幅度越小,用其截取信号所引起的误差越小。( Y )5、 互相关函数是偶实函数。( X )6、 利用系统输入x(t)与输出y(t)的自功率谱密度函数,可求该系统的频率响应函数。( X )7、 若系统是完全线性的,则输入-输出的相干函数一定为1。( X )(三)简答和计算

6、题1、 已知信号,求信号的自相关函数,并画出自功率谱(双边幅值谱)。2、 求频率相同的单位方波和正弦波的互相关函数。3、 相关滤波器的基本原理是什么?举例说明其工程应用。4、 试根据一个信号的自相关函数图形,讨论如何确定该信号中的常值分量和周期成分。5、 某一系统的输入信号为x(t),若输出y(t)与输入x(t)相同,输入的自相关函数和输入输出的互相关函数之间的关系为,试说明该系统起什么作用?6、 应用巴塞伐尔定理求的积分值。第六章 振动测试(一)填空题1、 单自由度系统质量块受力所引起的受迫振动,位移共振频率 系统固有频率,速度共振频率 系统固有频率,加速度共振频率 系统固有频率。2、 单自

7、由度系统质量块受力所引起的受迫振动,在相位共振处位移始终落后于激振力 90 度。3、 单自由度系统基础运动所引起的受迫振动,当激振频率 远大于 固有频率时,质量块和壳体之间的相对运动和基础振动近于相等。4、 激励方式分为 , , 。5、 按所测的振动性质可将拾振器分为 和 。6、 阻抗头的前端是 ,后面是测量激振点响应的 。7、 压电式传感器的测量电路(即前置放大器)有两种形式: 、和 。8、 机械系统的主要振动参数是 , 和 。9、 相对法校准传感器时,经国家计量等部门严格校准过的传感器起着“振动标准传递”的作用,称为 传感器。(二)判断对错题(用或表示)1、 压电式加速度计的灵敏度越高,其

8、工作频率越宽。( )2、 磁电式速度拾振器的上限工作频率取决于其固有频率。( )3、 压电式加速度计手持探针法测振时,加速度计的使用上限频率最低。( )4、 压电式加速度计的重量越轻,使用上限频率越高,灵敏度越低。( )5、 涡流位移传感器属于绝对式拾振器。( )6、 低频激振时,激振器的安装固有频率应比激振频率高3倍以上。( )7、 快速正弦扫描激振属于宽带激振法。( )8、 脉冲锤的锤头越软,则激励的频率范围越大。( )9、 在振动测试中,测得的激励和响应之间的相位差包括了测试系统中所有仪器的相移。( )(三)简答和计算题1、 对单自由度系统质量块受力所引起的受迫振动,分别写出其位移频响函

9、数、速度频响函数、加速度频响函数。2、 对单自由度系统基础位移所引起的受迫振动,分别写出其相对位移频响函数、绝对位移频响函数。3、 对于压电式加速度计,画出其工作原理图,并说明为什么其上限频率取决于固有频率?4、 对于磁电式绝对速度计,画出其工作原理图,并说明为什么其下限频率取决于固有频率?5、 如何用实频曲线估计系统的固有频率和阻尼比?画图说明。参考答案第一章 信号及其描述(一)1、信号;2、时间(t),频率(f);3、离散性,谐波性,收敛性;4、准周期,瞬态非周期;5、均值,均方值,方差;6、偶,奇;(二)1、;2、;3、;4、;5、;(三)1、,;2、0,;3、;4、; 5、;第二章 测

10、试装置的基本特性(一)1、1/2,;2、123;3、傅立叶变换法,滤波器法;4、;5、被测量;6、线性;(二)(4)(3)(2)(4)(2)(3)(1)(三) (四)略第三章 常用传感器(一)1、电阻、电感、电容、涡流;压电、磁电;2、金属丝的几何变形,半导体材料的电阻率变化;3、差动;4、电荷,电压,电荷;5、涡电流;6、mv / (m/s);7、压电效应。(二)(2)(3)(4)(2)(3),(3)(4)(4)(2)(三) (四)略第四章 信号调理、处理和记录(一)1、电压或电流;2、激励电压;3、桥臂数;4、相乘,相乘;5、鉴频;6、幅值,频率;7、幅频特性曲线降为最大值的倍时对应的频率

11、为截止频率;,8、大;(二)(1)(1)(3)(2)(4)(三) (四)略第五章 信号处理初步(一)1、概率密度函数,自相关函数;2、带通滤波法,傅立叶变换法;3、有限带宽,;4、100;5、,0;6、相干函数;7、;8、周期图法;9、功率密度,能谱;10、时域,频域;(二)1、;2、;3、;4、;5、;6、;7、;(三)1、,;2、;3、同频相关、不同频不相关;4、信号的常值分量为其自相关函数均值的开方,周期成分与其自相关函数周期成分的频率相同、幅值成比例关系;5、该系统的作用是使信号幅值不变、相位提前T;6、;第六章 振动的测试(一)1、小于,等于,大于;2、90;3、远大于;4、稳态正弦激振,随机激振,瞬态激振;5、相对式,绝对式;6、力传感器,加速度计;7、电荷放大器,电压放大器;8、固有频率,阻尼比,振型;9、参考。(二)1、;2、;3、;4、;5、;6、;7、;8、;9、;(三)略

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁