数列求和例题(3页).doc

上传人:1595****071 文档编号:36347643 上传时间:2022-08-26 格式:DOC 页数:3 大小:109.50KB
返回 下载 相关 举报
数列求和例题(3页).doc_第1页
第1页 / 共3页
数列求和例题(3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《数列求和例题(3页).doc》由会员分享,可在线阅读,更多相关《数列求和例题(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、等比数列求和公式:3、 4、5、例1 已知,求的前n项和.例2 设Sn1+2+3+n,nN*,求的最大值. 解:由等差数列求和公式得 , (利用常用公式) 当 ,即n8时,二、错位相减法求和这

2、种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中 an 、 bn 分别是等差数列和等比数列.例3 求和: 例4 求数列前n项的和.三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.例5 求证: 例6 求的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例7 求数列的前n项和:,例8 求数列n(n+1)(2n+1)的前n项和.五、裂项法求和这是分解与组合思想在数列求和中的

3、具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1) (2)(3) (4)(5)(6) 例9 求数列的前n项和. 例10 在数列an中,又,求数列bn的前n项的和. 例11 求证: 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn. 例12 求cos1+ cos2+ cos3+ cos178+ cos179的值. 例13 数列an:,求S2002. 例14 在各项均为正数的等比数列中,若的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.例15 求之和. 例16 已知数列an:的值.-第 3 页-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁