带电粒子在磁场中的运动(6页).doc

上传人:1595****071 文档编号:36344243 上传时间:2022-08-26 格式:DOC 页数:6 大小:753KB
返回 下载 相关 举报
带电粒子在磁场中的运动(6页).doc_第1页
第1页 / 共6页
带电粒子在磁场中的运动(6页).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《带电粒子在磁场中的运动(6页).doc》由会员分享,可在线阅读,更多相关《带电粒子在磁场中的运动(6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-带电粒子在磁场中的运动-第 6 页14、(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。(1)中间磁场区域的宽度d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a点开始运动

2、到第一次回到a点时所用的时间t.解:(1)带正电的粒子在电场中加速,由动能定理得 在磁场中偏转,由牛顿第二定律得 可见在两磁场区域粒子运动的半径相同。如右图,三段圆弧的圆心组成的三角形是等边三角形,其边长为2r (2)带电粒子在中间磁场区域的两段圆弧所对应的圆心角为:,由于速度v相同,角速度相同,故而两个磁场区域中的运动时间之比为: (3)电场中, 中间磁场中, 右侧磁场中, 则15、(20分)如图10所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E。一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电

3、场作用后恰好从e处的小孔射出。现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2)电场强度E与磁感应强度B的比值为多大?解、(1)根据粒子在电场中的偏转方向,可知粒子带正电,再根据左手定则判断,磁场方向垂直于纸面向外。 (2)设带电粒子的电量为q,质量为m,盒子的边长为l,粒子在电场中沿ad方向的位移为l,沿ab方向的位移为,得,解得匀强电场的场强为 带电粒子在磁场中作匀速圆周运动,轨道半径为R,根据牛顿第二定律得 解得 根据如图的几何关系 解得轨道半径为 解得

4、磁场的磁感应强度 因此解得 24、如图11所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。质量为m,带电量为q的粒子,先后两次沿着与MN夹角为(090)的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ边界射出磁场。第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。(2)加速电压的值。解、(1)如图答1所示,经电压加速后

5、以速度射入磁场,粒子刚好垂直PQ射出磁场,可确定粒子在磁场中做匀速圆周运动的圆心在PQ边界线的O点,半径与磁场宽L的关系式为 ,又 ,解得 加匀强电场后,粒子在磁场中沿直线运动射出PQ边界的条件为EqBq,电场力的方向与磁场力的方向相反。 由此可得出,E的方向垂直磁场方向斜向右下,与磁场边界夹角为,如图答2。(2)经电压加速后粒子射入磁场后刚好不能从PQ边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ边界相切,要确定粒子做匀速圆周运动的圆心O的位置,如图答3所示,圆半径与L的关系式为: 又,解得 由于,所以 xyOPB23 如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直

6、的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。(1)求电场强度的大小和方向。(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。解析:(1)设带电粒子的质量为m,电荷量为q,初速度为v,电场强度为E。可判断出粒子受到的洛伦磁力沿x轴负方向,于是可知电场强度沿x轴正方向且有 qE=qvB 又 R=vt0 则 (2)仅有电场

7、时,带电粒子在匀强电场中作类平抛运动 在y方向位移 由式得 设在水平方向位移为x,因射出位置在半圆形区域边界上,于是 又有 得 (3)仅有磁场时,入射速度,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r,由牛顿第二定律有 又 qE=ma 由式得 由几何关系 即 带电粒子在磁场中运动周期 则带电粒子在磁场中运动时间 所以 25如图,与水平面成45角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q0)的粒子以速度从平面MN上的点水平右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方

8、向垂直于纸面向里。求粒子首次从II区离开时到出发点的距离。粒子的重力可以忽略。解析:设粒子第一次过MN时速度方向与水平方向成1角,位移与水平方向成2角且2=450,在电场中做类平抛运动, 则有:得出: 在电场中运行的位移:在磁场中做圆周运动,且弦切角为=1-2,得出:在磁场中运行的位移为:所以首次从II区离开时到出发点的距离为:25如图,在区域I(0xd)和区域II(dx2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的

9、夹角为30;因此,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求(1)粒子a射入区域I时速度的大小;(2)当a离开区域II时,a、b两粒子的y坐标之差。解析:(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为,如图,由洛仑兹力公式和牛顿第二定律得 由几何关系得 式中,由式得 (2)设粒子a在II内做圆周运动的圆心为Oa,半径为,射出点为(图中未画出轨迹),。由洛仑兹力公式和牛顿第二定律得 由式得 、和三点共线,且由 式知点必位于 的平面上。由对称性

10、知,点与点纵坐标相同,即 式中,h是C点的y坐标。 设b在I中运动的轨道半径为,由洛仑兹力公式和牛顿第二定律得 设a到达点时,b位于点,转过的角度为。如果b没有飞出I,则 式中,t是a在区域II中运动的时间,而 由式得 由式可见,b没有飞出。点的y坐标为 由式及题给条件得,a、b两粒子的y坐标之差为 35如图19(a)所示,在以O为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。(1) 已知粒子从外圆上以速度射出,求粒子在A点的初速度的大小(2) 若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度射出,方向与OA延长线成45角,求磁感应强度的大小及粒子在磁场中运动的时间O/r(3) 在图19(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?35、解析: (1)由动能定理:Uq=mv12-mv02 得:v0= (2)如右图:粒子在磁场中作圆周运动的半径为r,则r2=2()2 RV3B1qv2=m 由得:B1= T= t = 由 t =(3)由B2qv3=m 可知,B越小,R越大。与磁场边界相切的圆的最大半径为 R= 所以 B2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁