《工程力学教案(46页).doc》由会员分享,可在线阅读,更多相关《工程力学教案(46页).doc(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第一章第二章第三章 工程力学教案-第 45 页第四章 静力学基础力学包括静力学,动力学,运动学三部分,静力学主要研究物体在力系作用下的平衡规律,静力学主要讨论以下问题: 1.物体的受力分析;2.力系的等效.与简化;3. 力系的平衡问题。第1讲 1 1静力学的基本概念 1-2静力学公理【目的与要求】1 、使学生对静力学基本概念有清晰的理解,并掌握静力学公理及应用范围。2、会利用静力学静力学公理解决实际问题。 【重点、难点】 1、力、刚体、平衡等概念;2、正确理解静力学公理。 一、 静力学的基本概念1、力和力系的概念 一)力的概念 1)力的定义:力是物体间的相互作用,这种作用使物体运动状态或形状
2、发生改变。(举例理解相互作用) 2)力的效应: 外效应(运动效应):使物体的运动状态发生变化。(举例) 内效应(变形效应):使物体的形状发生变化。(举例) 3)力的三要素:大小、方向、作用点。 力是定位矢量 4)力的表示: 图示 符号:字母箭头 如: 二)力系的概念1)定义:作用在物体上的一组力。(举例)2)力系的分类 按力的的作用线现在空间分布的形式: A汇交力系 b平行力系 c一般力系 按力的的作用线是否在同一平面内 A平面力系 B 空间力系3)等效力系与合力 A等效力系 两个不同力系,对同一物体产生相同的外效应,则称之 B合力若一个力与一个力系等效,则这个力称为合力 2.刚体的概念: 1
3、)定义:在力的作用下保持其大小和形状不发生变化。 2)理解:刚体为一力学模型。 3.平衡的概念: 1)平衡物体相对惯性参考系(如地面)静止或作匀速直线运动 2)平衡力系作用在刚体上使物体处于平衡状态的力系。 3平衡条件平衡力系应满足的条件。二静力学公里公理一:二力平衡公里作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且作用在同一直线上。使刚体平衡的充分必要条件二力构件:在两个力作用下处于平衡的物体。公理二加减平衡力系原理在已知力系上加上或减去任意的平衡力系,并不改变厡力系对刚体的作用。推理1 力的可传性作用于刚体上某点的力,可以沿着它的作用线移到刚体内任
4、意一点,并不改变该力对刚体的作用。作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用线公理3 作用和反作用定律作用力和反作用力总是同时存在,同时消失,等值、反向、共线,作用在相互作用的两个物体上公理4 力的平行四边形法则作用在物体上同一点的两个力,可以合成为一个合力。合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定,如图所示F1+ F2= FR推理2 三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。平衡时必与共线则三力必汇交O 点,且共面【小结】: 本节重点介绍了力的概念
5、、四个公理和二个推论;二力构件与三力构件,应掌握其判断方法;注意作用与反作用公理与二力平衡条件的区别。 【作业】思考题 1-1、1-2第2讲 1 3 约束与约束反力 【目的与要求】1 、 使学生对约束的概念有清晰的理解 ; 2 、掌握柔性、光滑面、光滑铰链约束的 构造及约束反力的确定; 3 、能正确的绘制各类约束的约束反力,尤其是铰链约束、二力杆、三力构件的约束反力的画法。 【重点、难点】 1 、 约束及约束反力的概念。 2 、工程中常见的约束类型及约束反力的画法 。 自由体:在空间运动,其位移不受任何限制的物体。非自由体:在空间运动,其位移受到某些方面任何限制的物体。主动力:约束反力以外的其
6、他力约束 对非自由体某个方向的移动期限制作用的周围物体。约束反力(约束力)约束对被约束物体作用的力。 约束反力的特点约束反力的方向总是与非自由踢被约束所限制的位移方向相反。一。柔索约束 2.约束反力的特点:(拉力) 大小:待定作用点;连接点方向:柔索对物体的约束力沿着柔索背向被约束物体。 二。光滑表面约束(FN) 大小:待定 方向:沿着接触面的公法线指向物体内部。 作用点:接触点 三。光滑铰链约束 1)实例2)反力特点:(Fx,Fy)大小:待定方向:互相垂直的二分力作用点:铰链转动中心1)实例 2)反力特点: 大小:待定 方向:垂直于支撑面 作用点:铰链转动中心3。中间铰链1)实例2)反力特点
7、大小:待定。方向:互相垂直的二分力。作用点:铰链转动中心。四。光滑球铰链约束(Fx,Fy,Fz) 1)约束特点:通过球与球壳将构件连接,构件可以绕球心任意转动,但构件与球心不能有任何移动2)约束力:当忽略摩擦时,球与球座亦是光滑约束问题3)约束力通过接触点,并指向球心,是一个不能预先确定的空间力.可用三个正交分力表示【小结】 1 、本节课详尽地介绍了工程中常见的各种约束 构造及约束反力的确定。 2 、光滑铰链约束的不同类型所具有的特点和 区别是本节课的难点, 3 、应通过扎实的练习,熟练掌握工程中常见的各种 约束及约束反力的正确画法 。 【作业】1-2第3讲 1 4 物体的受力分析 受力图 【
8、目的与要求】 1 、 通过本节课的学习:使学生能从简单的物体系统中正确地选取研究对象,熟练准确地画出受力图 2 、培养学生能初步将工程实际问题抽象为力学模型的能力。 3 、初步认识几种载荷。 【重点、难点】 1 、 画受力图是静力学问题的定性分析,是解决静力学问题很重要的环节。 2 、单个物体和简单的物体系统(三个以下物体组成的系统)的受力分析和受力图。 内容:在受力图上应画出所有力;主动力和约束力(被动力) 一。 画受力图步骤:1、取所要研究物体为研究对象(隔离体)画出其简图2、画出所有主动力3、按约束性质画出所有约束(被动)力二。应用实例1. 碾子重为P,拉力为 F ,A 、B 处光滑接触
9、,画出碾子的受力图 解1)确定研究对象画简图 2)画出主动力 3)画出约束力2水平均质梁 AB 重为 P1 ,电动机重为 P2 ,不计杆CD 的自重,画出杆CD和梁 AB 的受力图图(a) 解:1)取 CD杆,其为二力构件,简称二力杆,其受力图如图(b) 2)取AB 梁,其受力图如图 (c) 讨论 CD杆的受力图能否画为图(d)所示?若这样画,梁 AB的受力图又如何改动? 4不计三铰拱桥的自重与摩擦,画出左、右拱的受力图与系统整体受力图解右拱CB为二力构件,其受力图如图(b)所示取左拱 AC,其受力图如图(c)所示系统整体受力图如图(d)所示讨论1考虑到左拱 三个力作用下平衡,也可按三力平衡汇
10、交定理画出左拱 的受力图,如图(e)所示此时整体受力图如图(f)所示讨论2:若左、右两拱都考虑自重,如何画出各受力图? 如图(g)(h)(i) 5 不计自重的梯子放在光滑水平地面上,画出梯子、梯子左右两部分与整个系统受力图(a)解:1)绳子受力图如图(b)所示 2)梯子左边部分受力图如图(c)所示3)梯子右边部分受力图如图(d)所示 4)整体受力图如图(e)所示提问:左右两部分梯子在A处,绳子对左右两部分梯子均有力作用,为什么在整体受力图没有画出?处理教材中的练习 P15页 1-6【小结】 本节课重点讨论了如何正确的作出受力图。注意事项: 1 )要熟练掌握常见约束的构造及约束反力的确定方法;
11、2 )掌握画受力图的步骤,明确画受力图的重要性 . 3 )画受力图的过程就是对研究对象进受力分析的过程,受力图若不正确,说明不会正确的受力分析,不只是学不好本课程,还会影响后续课程的学习 。 【作业】 1-4 1-5 内容: 第二章 力系等效定理第4讲 2 1 力在轴及平面上的投影 2 2力系的主矢目的与要求 1.掌握力在坐标轴和力在平面上的投影方法。重点、难点: 内容一 。力在坐标轴的投影 1.平面力系在坐标轴的投影 力在坐标轴上的投影是代数量,若投影的指向与坐标轴的正向一致,投影值为正;反之为负。力F在x轴、y轴上的投影为 (式)如图1-26所示,力F在x轴和y轴的投影分别为 (式) 力在
12、坐标轴的投影 一次投影法 或 二.力在平面上的投影(空间力系投影关系) 1.在平面的投影 2. 在轴上的投影 (二次投影法) 举例计算(略)三力系的主矢力系的主矢 -力系中各力矢的几何和。记作: 讨论 力系的主矢与力系的合力(略)【小结】 1.力在轴上的投影 2.力在平面上的投影 【作业】 P33页 2-2 2-3 第5讲: 2 3 力对点之距与力对轴之距 2 4力系的主距 2 5力系的等效定理【目的与要求】 通过本节课的学习: 1、掌握力矩的概念,正确理解力对点、力对轴的转动效果2、熟悉力系的主距及力系的等效定理【重点、难点】 1力对点的矩与力对轴之距的概念的正确理解3. 理解力系的主距和等
13、效力系的概念一 力对点的矩与力对轴之距 1.力对点之距 合力距定理 1)力对点之距在力学上以乘积Fd作为量度力F使物体绕O点转动效应的物理量,这个量称为力F对O点之矩,简称力矩,以符号表示,即O点称为力矩中心(简称矩心)。力使物体绕矩心作逆时针方向转动时,力矩取正号;作顺时针方向转动时,取负号。平面内力对点之矩是一个代数量。力对点之矩有如下特性:力F对O点之矩不仅取决于力F的大小,同时还与矩心的位置有关;力F对任一点之矩不会因该力沿其作用线移动而改变,因为此时力和力臂的大小均来改变:力的作用线通过矩心时,力矩等于零;互成平衡的二力对同一点之矩的代数和等于零。作用于物体上的力可以对任意点取矩。
14、2) 合力距定理 合力距定理:合力对某点的距等于各力对于该点的距的代数和。举例计算 (略)2力对轴之距 力使物体绕某轴转动效应的度量称为力对轴的距。力对轴的距是一个代数量,等于力在垂直于该轴的平面内的投影对该轴与此平面的交点之距。记作力对轴为零的情况;1) 力与轴平行时;2)力的作用线与轴相交时。3. 力对点的矩与力对轴之距的关系 力对点的距矢在通过该点的轴上的投影等于此力对该轴的距,该关系称为力矩关系定理。即举例计算 (略) 力系中各力对同一点的距的几何和称为力系对该点的主距。将上述矢量式向直角坐标轴投影,便得三力系的等效定理【小结】: 1 、力对点之距与力对轴之距2 、力系的主距3、合力距
15、定理的应用4 、力系的等效定理 【作业】 P33 2-10 2-15 2-16内容:第三章 汇交力系和力偶系第6讲 3-1 汇交力系的合成【目的与要求】2.能深刻理解平面力偶及力偶矩的概念, 3.明确力偶的基本性质及等效条件 。 【重点、难点】 2.力偶及其基本性质、力偶的等效条件; 一。汇交力系的合成 概念:汇交力系 平面汇交力系 空间汇交力系力的多边形规则汇交力系的合力作用线通过汇交点,合力矢的大小合方向与力系的主矢相同,即等于各分力的矢量和。2解析法平衡条件解析式Cos(FR,i)= Cos(FR,J)= Cos(FR,K)=汇交力系的平衡根据力系平衡的充要条件可得:汇交力系的平衡的条件
16、为:主矢为零。即平面汇交力系平衡方程例3-3 如图,已知G100N,求斜面和绳子的约束力取小球为研究对象,画受力图并建立坐标系如图;列平衡方程若坐标系如图b)建立,平衡方程如何写?第7讲 3-3力偶系【目的与要求】 1、能深刻理解平面力偶及力偶矩的概念, 2 、明确平面力偶系的合成条件与平衡条件的应用 。 【重点、难点】 1 、力偶及其基本性质、力偶的等效条件; 2 、平面力偶系的平衡条件及其应用。 一、力偶 力偶距矢 力偶的等效1.力偶:定义: 两个大小相等,方向相反,且不共线的平行力组成的力系称为力偶。力偶的表示法 书面表示(F,F) 图示力偶矩 大小 正负规定:逆时针为正 单位量纲:牛米
17、N.m或千牛米kN.m力偶的三要素 力偶矩的大小、力偶的转向、力偶的作用面2力偶的基本性质 力偶无合力 力偶中两个力对其作用面内任意一点之矩的代数和,等于该力偶的力偶矩 力偶的可移动性:(保持转向和力偶矩不变) 力偶的可改装性:(保持转向和力偶矩不变)力偶的等效平面力偶系1平衡条件:力偶系得力偶距矢为零。2平面力偶系平衡方程【小结】 本节课主要介绍了: 1 、力矩的概念和力对点之矩的计算; 2 、平面力偶系中力偶的概念及其基本性质; 3 、力偶的等效变化性质是平面力偶系的简 化基础, 应熟练掌握力偶的等效变化性质,为力偶系的合成 奠定基础 4、应熟练掌握由平面力偶系的平衡条件解平面力偶系的平衡
18、问题. 【作业】3 12 a) 、 b) 、 g) ; 3 14 内容: 第四章平面一般力系 第8讲 4 1 平面任意力系向一点简化、平面任意力系简化结果的分析 目的与要求 1 、掌握力的平移定理及其应用 2 、使学生掌握平面任意力系向一点简化的方法、 学会应用解析法求主矢和主矩 3 、能熟练地计算平面任意力系简化的最后结果 确定合力的作用线位置 重点、难点: 1 、力的平移定理 2 、主矢与主矩的概念 3 、平面任意力系向作用面内简化 4 、简化结果的讨论,合力大小、方向、作用线位置的确定 定理内容:作用于刚体上的力可平移到刚体内任意一点,但必须附加一个力偶,此附加力偶的力偶距等于原力对移动
19、点的距。4.2平面任意力系的简化将图3-5-2所示平面汇交力系和平面力偶系合成,得:1、主矢:主矩如图3-5-3主矢FR和主矩MoFR0Mo=0FR =0Mo 0FR 0Mo 02、固定端的约束反力性质特点:限制了平面内可能的运动(移动和转动)。一反力及一反力偶。小结: 本节课主要介绍了: 1 、力的平移定理,平面任意力系的简化,主矢与主矩的计算、固定端约束反力的确定,简化结果的讨论是该节课的重点也是本章的重点。 2 、通过本节课的学习应明确: 1 )主矢与简化中心位置无关,主矢不是原力系的合力 2 )主矩与简化中心有关,主矩不是原力的合力偶。 3 、 能熟练计算力系的合力的大小、方作用线位置
20、。 4 2 平面任意力系的平衡条件及其应 目的与要求 1 、 使学生在平面汇交力系、平面力偶系平衡条件的基础上深入理解平面任意力系的平衡条件及平衡方程的三种形式 2 、能熟练地求解平面任意力系作用下单个物体的平衡问题 重点、难点:2 、平面任意力系的平衡条件 平衡条件主矢为零:FR=0主矩为零:Mo=0即平衡方程二距式方程 三距式方程应用举例解题步骤: 选取研究对象,画受力图 建立直角坐标系 列平衡方程并求解已知F=15kN,求A、B处支座反力解1、画受力图,并建立坐标系2、列方程举例:已知,求M及O点约束力。小结:本节课主要介绍了: 1 、平面任意力系的平衡方程。 2 、用平衡条件求解单个物
21、体的平衡。 是本章的重点,应熟练掌握其解题方法 作业 P70页 4-3 4-4 4-6物体系统平衡物体系物体的数量和平衡方程个数物体系统问题求解原则静定和静不定问题第9讲 4- 2 平面任意力系的平衡条件及其应(二) 目的与要求 1 、理解并掌握平面平行力系的平衡条件及平衡方程的两种形式 2 、能熟练地求解平面任意力系作用下单个物体的平衡问题 重点、难点: 2 、平面平行力系的平衡条件 3 、平衡条件在工程实际问题中的应用 平面平行力系的平衡方程1平行力系的平衡条件:主矢为零,主距为零。例3-7已知:OA=R,AB= l,不计物体自重与摩擦,系统在图示位置平衡;求:力偶矩M 的大小,轴承O处的
22、约束力,连杆AB受力,冲头给导轨的侧压力.解:取冲头B,画受力图.解得 3 3 静定与静不定问题的概念 物体系统的平衡 目的与要求 1 、 理解静定与静不定问题的概念 2 、理解并掌握平面平行力系的平衡条件及平衡方程的两种形式 3 、能熟练掌握物系平衡问题求解方法 重点、难点: 2 、静不定的概念 3 、物体系统平衡问题及解题方法 已知:求:铰链A和DC杆受力.(用平面任意力系方法求解)解:取AB梁,画受力图.小结:本节课主要介绍了: 1 、平面任意力系的平衡方程及其应用。 2 、平面任意力系和特殊情况平面平行力系的平衡方程及应用。 3、对由实际工程经抽象简化后的力学问题应先鉴定它是静定还是静
23、不定问题。 4、掌握物体系统平衡问题的解题方法,理解可解条件及其确定方法。 作业 P70页 4-11 4-13 4-16第10讲 第5章 摩檫目的与要求 1 、 能区分滑动摩擦力与极限摩擦力,对滑动摩擦定律有清晰的理解。 2 、理解摩擦角的概念和自锁现象 3 、能熟练地用解析法计算考虑摩擦力存在的物体的平衡问题。 重点、难点:1 、滑动摩擦力和最大的静滑动摩擦力 2 、擦角的概念和自锁现象 3 、平衡的临界状态和平衡范围 4 、用解析法求解有摩擦力存在的平衡问题摩擦滑动摩擦滚动摩擦静滚动摩擦动滚动摩擦摩擦干摩擦湿摩擦5-1滑动摩擦静滑动摩擦力的特点1 方向:沿接触处的公切线,2 大小:3 (库
24、仑摩擦定律)与相对滑动趋势反向;大小:(对多数材料,通常情况下)动滑动摩擦的特点:方向沿接触处的公切线,与相对滑动趋势反向;物体处于临界平衡状态时,全约束力和法线间的夹角摩擦角和自锁现象5-2摩擦角全约束力和法线间的夹角的正切等于静滑动摩擦系数摩擦锥(角)2 自锁现象考虑摩擦力的平衡问题小结: 本节课重点讨论了有摩擦时物体的平衡问题的解析法及应用,应注意: 0 F F max , 由于 F 是个范围值,即问题的解答也是个范围值,要采取两种方式分析这个范围 1 、以 F F max fN ,作为补充方程求解平衡范围的极值 1 、以 F fN 不等式进行运算。 作业P87页 5-5 、 6 、 7
25、第12讲 第6章空间力系 6 1 力在空间直角坐标轴上的投影 6 2 重心 目的与要求 1 、 能熟练掌握空间力简化及平衡 重点、难点: 6 1空间一般力系最后结果为一合力.合力作用线距简化中心为当 最后结果为一个合力.合力作用点过简化中心.(412)空间任意力系平衡的充要条件:该力系的主矢、主矩分别为零.1.空间任意力系的平衡方程空间平行力系的平衡方程(413)2.空间约束类型举例3.空间力系平衡问题举例62 空间任意力系的平衡方程称为重心或形心公式 再对x轴用合力矩定理则计算重心坐标的公式为(414)对均质物体,均质板状物体,有2 确定重心的悬挂法与称重法(1) 悬挂法图a中左右两部分的重
26、量是否一定相等?,例4-2已知:物重P=10kN,CE=EB=DE;求:杆受力及绳拉力解:画受力图如图,列平衡方程结果:小结: 本节课主要介绍了: 1 、 空间力沿空间直角坐标的平衡 2、能熟练运用组合法、负面积法求物体的重心 作业 P101页 6-1 6-4 6-5 第13讲 笫 7章 轴向拉伸与压缩 内容: 材料力学引言 7 1 、轴向拉伸与压缩的概念 7 2 、轴向拉伸与压缩时横截面上的内力 轴力 目的与要求: 理解构件强度、刚度和稳定性的概念;了解材料力学的任务、研究对象、基本假设以及杆件变形的四种基本形式;理解内力和应力的概念,了解截面法;了解直杆在轴向拉伸或压缩时的受力特点和变形特
27、点,会判断工程实际中的拉压杆并画出其计算简图; 能熟练 应用截面法或轴力计算规则求轴力并绘制轴力图。 重点、难点: 重点: 拉(压) 杆 横截面上的轴力。 引言:1材料力学的任务:强度刚度稳定性 在保证满足强、刚度、稳定性的前提下以最经济的代价,为构件选材、确定合理的形状和尺寸,为设计构件提供必要的理论基础和计算方法。2、材料力学的基本假设:连续性假设 均匀性假设 各向同性假设 微小变形假设 完全弹性假设3、杆件基本变形 拉压 剪切 弯曲 扭转 组合变形 7 1 、轴向拉伸与压缩的概念1. 概念2. 实例基本变形(轴向)拉伸、压缩载荷特点:受轴向力作用变形特点:各横截面沿轴向做平动内力特点:内
28、力方向沿轴向,简称 轴力FN轴力正负规定:轴力与截面法向相同为正FN=P7-2截面法 轴力 轴力图一 、截面上的内力二、 截面法步骤:“截、留、代、平”三、 轴力与轴力图杆件横截面上的内力的合力成为轴力,规定:离开截面(受拉)为正,指向截面(受压)为负。q 轴力图:为了表示截面上的轴力沿轴线的变化情况用轴力图来如图14-1-4小结: 1 、 强度、刚度和稳定性的概念; 2 、 材料力学的任务、变形固体的变形性质及基本假设; 3 、 杆件变形的四种基本形式; 4 、 轴向拉伸与压缩的概念; 5 、 内力、截面法、轴力图 的概念; 6 、 轴力 的 计算规则。 作业: P137页 : 7-1 a)
29、 b) c) d)第14讲 内容: 7 3 、 轴向拉伸与压缩时横截面上的应力 7 4 、 轴向拉伸与压缩时的变形,胡克定律 目的与要求: 掌握直杆 在拉伸或压缩时的 应力和 变形 计算;理解拉压胡克定律及其使用条件。 重点、难点: 重点: 拉(压) 杆 横截面上的正应力; 胡克定律, 拉(压) 杆 的变形 计算。 7 3 、 轴向拉伸与压缩时横截面上的应力 一、应力的概念2、横截面上的正应力(略)应用举例(参照教材P113页 例7-3 7-4)3、斜截面上的应力讨论 7 4 、 轴向拉伸与压缩时的变形,胡克定律 一 变形、应变应变q 分析单元Kv 单元原棱长为x,u 为绝对伸长量,其相对伸长
30、u/ x 的极限称为沿x 方向的正应变。u x即: x=limx2. a点的横向移动aa,使得oa直线产生转角,定义转角为切应变=aaoa=aax)二、胡克定律q 实验证明:v 当正应力小于某一极限值时,正应力与正应变存在线性关系, 即:=称为胡克定律,E为弹性模量,常用单位:Gpa(吉帕)v 同理,切应变小于某一极限值时,切应力与切应变也存在线性关系 即:=此为剪切胡克定律,G为切变模量,常用单位:GPa钢与合金钢E=200-220GPaG=75-80GPa铝与合金铝E=70-80GPaG=26-30GPa木材E=0.5-1GPa橡胶胡克定律另一种表达;3、横向线应变、泊松比横向线应变拉伸时
31、,;压缩时,。泊松比4、应用举例(略)小结: 1 、 正应力 计算公式; 2 、 胡克定律 。 作业: P138页 7-6 7-8 第15讲内容: 7 5 、 材料在拉伸与压缩时的力学性能 7 6 、轴向拉压时的强度计算目的与要求: 了解塑性材料和脆性材料的力学性 能 ,掌握强度计算的方法。 重点、难点: 重点: 材料的力学性能 , 强度计算。难点:强度条件 7 5 、 材料在拉伸与压缩时的力学性能 一、拉伸试验1.试样:圆形试样矩形截面试样 2拉伸曲线:低碳钢 变形阶段:A 弹性阶段 B屈服阶段 C强化阶段 D局部变形阶段 其他材料(略)q 铸铁等脆性材料在拉伸时,变形很小,应力应变曲线图没
32、有明显的直线部分,通常近似认为符合胡克定律。其抗拉强度b是衡量自身强度的唯一指标。3材料的塑性指标 伸长率断面收缩率 3. 冷作硬化现象4. 材料在压缩时的力学性能 7 6 、轴向拉压时的强度计算一、 极限应力、许用应力、安全系数1、 极限应力2、 许用应力3、 安全系数n二、 强度条件:三、 强度计算的三类问题1, 强度校核2, 许用载荷的确定3, 截面尺寸的确定四、 应用实例参照教材P126127页 例7-7 7-8 小结: 1 、低碳钢 拉伸时的力学性能; 2 、低碳钢 压缩时的力学性能; 3 、铸铁 拉伸时的力学性能; 4 、铸铁 压缩时的力学性能。 作业: P139页:7-12 7-
33、13 7-14 第16讲内容: 7 7、 拉伸与压缩静不定问题简介 7 8 、 应力集中的概念 目的与要求: 了解应力集中的概念;了解 拉伸与压缩静不定问题 。 重点、难点: 重点: 难点: 拉伸与压缩静不定问题 7 7、 拉伸与压缩静不定问题简介一、 静不定问题的概念二、 求解静不定问题的方法方法:根据变形协调条件补足方程。步骤:1、列静力学平衡方程 2、由变形几何关系列变形协调方程 3、利用物理关系补足方程 4、将补足方程与静力学方程联立求解。举例应用(略)三、 装配应力四、 温度应力 7 8 、 应力集中的概念 (略)小结: 1 、 应力集中的概念; 2 、 拉伸与压缩静不定问题。 作业
34、: P139页 7-11 7-19 笫 8 章 剪 切 与挤压第17讲 内容: 8 1 、剪切的概念 8 2 、剪切的实用计算 8 3、切应变,剪切胡克定律 目的与要求: 要求明确 剪切的概念, 了解受剪联接件的受力特点和变形特点; 能熟练地确定剪切面和剪力 ; 掌握常见受剪联接件的剪切实用计算;了解剪切变形的概念,理解剪切胡克定律及其应用条件。 重点、难点: 重点: 剪切的概念;剪切的 强度条件及其 实用计算。 8 1。 1 剪切的概念q 工程上常用于联结构件的螺栓、铆钉、销钉和键等称为联结件q 常见联结件的失效形式:v 剪切和挤压q 连接件的假定计算:v 假定应力是均匀分布在剪切面和积压面
35、上剪切的受力特点:作用在杆件两侧面上且与轴线垂直的外力合力的大小相等、方向相反作用线很近。是杆件两部分沿中间截面在作用力方向上发生相对错动。计算实例假定:切应力均匀分布在剪切面上挤压强度条件举例挤压的假定计算q 有效积压面面积v 挤压接触面为平面v 挤压接触面为曲面q 挤压应力q 挤压强度设计准则小结: 1 、 剪切的 受力特点和变形特点; 2 、 剪切的 强度条件; 3 、 剪切胡克定律。 作业: P150页 8-2 8-5第18讲 笫 9 章 圆轴的扭转 9 1 、扭转的概念 9 2 、扭矩,扭矩图 目的与要求: 明确扭转构件的受力特点和变形特点,会判别工程实际中的受扭构件并画出其计算简图
36、;能熟练掌握外力偶矩、扭矩的计算和绘制扭矩图。 重点、难点: 重点: 扭矩的计算;扭矩图的绘制。 9 1扭转的概念 一、 实例二、 1、受力特点:杆件两端分别作用大小相等、转向相反、作用面均垂直于干的轴线的两个力偶的作用。2、变形特点:横截面绕轴线转动 9 2 、扭矩,扭矩图q 一、外力偶距的计算q 3二、扭矩及扭矩图1、内力:作用面与横截面重合的一个力偶,称为扭矩T2、内力的求解截面法:扭矩图;-仿照轴力图的画法,画出扭矩沿轴线的变化,就是扭矩图。 如图,主动轮A的输入功率PA=36kW,从动轮B、C、D输出功率分别为PB=PC=11kW,PD=14kW,轴的转速n=300r/min.试画出
37、传动轴的扭矩图按二er二、扭矩33按3、扭截 转变形后各个横截面仍为平面3、33,而且其大小、形状以=小结: 1 、 扭转的概念; 2 、 扭矩的 概念及 计算规则; 3 、 扭矩图的绘制。 作业: P128 页 9-3、4第19讲 9 3纯剪切 剪切胡克定律一、 纯剪切1、 单元体用相邻两横截面、两纵向截面及轴表面平行的两圆弧面,从扭转变形的杆内截出一微分六面体。有单元体的平衡条件可得:两平面内切应力等值反向,形成一对力偶。2、 纯剪切若单元体的量对互相垂直的平面上只有切应力,而另一对平面上没有任何应力的剪切。二、 切应力互等定理根据单元体的平衡方程可得出结论:在互相垂直的两个平面上,切应力
38、必然成对存在;两者都垂直于两平面的交线,方向则共同指向或共同背离这一交线。这就是切应力互等定理。三、 胡克定理当切应力不超过剪切比例极限时,切应力余切应变成正比。即. 9 4园轴扭转是的切应力及强度条件一、 园轴扭转时的应力1、 变形几何关系平面假设:原位平面的横截面变形后仍为平面横截面之间只是绕轴线做刚性转动。角度改变量为 到圆心距离为处de切应变 2、物理关系 3、静力学关系横截面上的扭矩为 其中 称为极惯性矩。4、应力计算 其中称为扭转截面系数二、极惯性矩与扭转截面系数1、 圆形截面2、空心截面园轴 三、强度条件与刚度条件1、强度条件 强度计算的三类问题 强度校核 许可载荷的确定 截面尺
39、寸的确定。2、 刚度条件 小结: 1 、 切应力计算公式,横截面上切应力的分布规律; 2 、 扭转角 计算公式; 3 、 强度、刚度条件。 作业 P164页9-10、13第20讲 笫 10 章 弯曲内力内容: 10 1 、平面弯曲的概念 10 2梁的计算简图 103 、梁弯曲时横截面上的内力 剪力与弯矩 目的与要求: 理解平面弯曲的受力特点和变形特点,会判别工程实际中的受弯构件并将其简化为梁的计算简图;掌握剪力和弯矩的计算。 重点、难点: 重点: 平面弯曲的受力特点和变形特点,剪力和弯矩的计算。 10 1 、平面弯曲的概念一、 实例二、 概念、1、纵向对称轴 2、纵向对称面 10 2梁的计算简
40、图一、 支承的简化1、固定端 2、固定铰支座 3活动铰支座二、梁的分类 1、简支梁2、外伸梁3、悬臂梁 103 、梁弯曲时横截面上的内力 剪力与弯矩一、 内力分析存在于横截面上的内力为剪力和弯矩。 其求解方法与求拉压变形的轴力、扭转变形的扭矩一样,也使用截面法。基本要领:截、留、代、平二、用截面法求内力符号的规定十六字口诀:左上右下,剪力为正;左顺右逆,弯矩为正。三、 应用实例 教材中P173页 例10-1、2小结作业P183页 10-2 a、 c、 g、10-3 c、 e、 g、第21讲 10 4剪力图与弯距图一、剪力方程与弯矩方程1剪力方程二、求解实例教材P175页例10-3、4、5、6、
41、7 10 5弯矩、剪力与载荷集度之间的关系一、弯矩、剪力与载荷集度之间的关系经分析:有以下关系 即由以上积分关系可得结论:对分布载荷某处的载荷集度等于该处剪力的一阶导数,等于该处弯矩的二阶导数。二、推论1、 弯矩图、剪力图曲线的斜率分别与 载荷的集度一一对应。2、 在集中力作用处,剪力有突变,其突变量等于集中力的数值,且剪力图上数值的变化方向与集中力的方向一致。在集中力作用处,弯矩图的斜率有突变,弯矩图出现尖角,发生转折。3、 在集中偶力作用处,剪力无突变,弯矩有突变 ,其突变量等于集中力偶的距数值,且集中力偶距顺时针方向,弯矩骤升、反之骤降。4、 若剪力图中处。弯矩取极值、四、 举例计算(略)小结1 、 剪力方程和弯矩方程; 2 、 剪力、弯矩与载荷集度的关系; 3 、 剪力图和弯矩图的作图规律。 作业P185页 10-3 a、d、e第22讲 笫 11 章 弯曲应力11-1 梁弯曲时 横截面上的正应力 目的与要求: 了解纯弯曲与横力弯曲的区别